persistent cell
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Miki Umetani ◽  
Miho Fujisawa ◽  
Reiko Okura ◽  
Takashi Nozoe ◽  
Shoichi Suenaga ◽  
...  

Bacterial persistence is a phenomenon in which a small fraction of isogenic bacterial cells survives a lethal dose of antibiotics. It is generally assumed that persistence is caused by growth-arrested dormant cells generated prior to drug exposure. However, evidence from direct observation is scarce due to extremely low frequencies of persisters, and is limited to high persistence mutants or to conditions that significantly increase persister frequencies. Here, utilizing a microfluidic device with a membrane-covered microchamber array, we visualize the responses of more than 106 individual cells of wildtype Escherichia coli to lethal doses of antibiotics, sampling cells from different growth phases and culture media. We show that preexisting dormant persisters constitute only minor fractions of persistent cell lineages in populations sampled from exponential phase, and that most persistent cell lineages grew actively before drug exposure. Actively growing persisters exhibit radical morphological changes in response to drug exposure, including L-form-like morphologies or filamentation depending on antibiotic type, and restore their rod-like shape after drug removal. Incubating cells under stationary phase conditions increases both the frequency and the probability of survival of dormant cells. While dormant cells in late stationary phase express a general stress response regulator, RpoS, at high levels, persistent cell lineages tended to show low to moderate RpoS expression among the dormant cells. These results demonstrate that heterogeneous survival pathways may coexist within bacterial populations to achieve persistence and that persistence does not necessarily require dormant cells.


Author(s):  
Xuemeng Shi ◽  
Zeyu Wen ◽  
Yajun Wang ◽  
Yan-Jun Liu ◽  
Kun Shi ◽  
...  

The actin cytoskeleton and membrane-associated caveolae contribute to active processes, such as cell morphogenesis and motility. How these two systems interact and control directional cell migration is an outstanding question but remains understudied. Here we identified a negative feedback between contractile actin assemblies and phosphorylated caveolin-1 (CAV-1) in migrating cells. Cytoplasmic CAV-1 vesicles display actin-associated motilities by sliding along actin filaments or/and coupling to do retrograde flow with actomyosin bundles. Inhibition of contractile stress fibers, but not Arp2/3-dependent branched actin filaments, diminished the phosphorylation of CAV-1 on site Tyr14, and resulted in substantially increased size and decreased motility of cytoplasmic CAV-1 vesicles. Reciprocally, both the CAV-1 phospho-deficient mutation on site Tyr14 and CAV-1 knockout resulted in dramatic AMPK phosphorylation, further causing reduced active level of RhoA-myosin II and increased active level of Rac1-PAK1-Cofilin, consequently led to disordered contractile stress fibers and prominent lamellipodia. As a result, cells displayed depolarized morphology and compromised directional migration. Collectively, we propose a model in which feedback-driven regulation between actin and CAV-1 instructs persistent cell migration.


2021 ◽  
Author(s):  
Kotryna Vaidžiulytė ◽  
Anne-Sophie Macé ◽  
Aude Battistella ◽  
William Beng ◽  
Kristine Schauer ◽  
...  

AbstractMigrating cells present a variety of paths, from random to highly directional ones. While random movement can be explained by basal intrinsic activity, persistent movement requires stable polarization. Here, we quantitatively address emergence of persistent migration in RPE1 cells over long timescales. By live-cell imaging and dynamic micropatterning, we demonstrate that the Nucleus-Golgi axis aligns with direction of migration leading to efficient cell movement. We show that polarized trafficking is directed towards protrusions with a 20 min delay, and that migration becomes random after disrupting internal cell organization. Eventually, we prove that localized optogenetic Cdc42 activation orients the Nucleus-Golgi axis. Our work suggests that polarized trafficking stabilizes the protrusive activity of the cell, while protrusive activity orients this polarity axis, leading to persistent cell migration. Using a minimal physical model, we show that this feedback is sufficient to recapitulate the quantitative properties of cell migration in the timescale of hours.


2020 ◽  
Author(s):  
Manon Lang ◽  
Evelyne Krin ◽  
Chloé Korlowski ◽  
Odile Sismeiro ◽  
Hugo Varet ◽  
...  

AbstractIndole is a small molecule derived from tryptophan degradation and proposed to be involved in bacterial signaling. We find that indole secretion is induced by sublethal tobramycin concentrations and increases persistence to aminoglycosides in V. cholerae. Indole transcriptomics showed strongly increased expression of raiA, a ribosome associated factor. Deletion of raiA abolishes the appearance of indole dependent persisters to aminoglycosides, while its overexpression leads to 100-fold increase of persisters, and a reduction in lag phase, evocative of increased active 70S ribosome content, which was confirmed by sucrose gradient analysis. We propose that, under stress conditions, inactive 70S ribosomes are associated with RaiA to be stored and rapidly reactivated when growth conditions become favorable again, in a mechanism different than ribosome hibernation. Our results point to an active process of persistent cell formation, through ribosome protection during translational stress and relief upon antibiotic removal. Translation is a universal process, and these results could help elucidate a mechanism of persistence formation in a controlled, thus inducible way.


Langmuir ◽  
2020 ◽  
Vol 36 (41) ◽  
pp. 12375-12382
Author(s):  
Qiujun Lu ◽  
Hu Dong ◽  
Jiali Hu ◽  
Linna Huang ◽  
Youyu Zhang ◽  
...  

EMBO Reports ◽  
2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Huiwen Hao ◽  
Jiahao Niu ◽  
Boxin Xue ◽  
Qian Peter Su ◽  
Menghan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document