brain image analysis
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 18)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaie Habata ◽  
Yongjeon Cheong ◽  
Taku Kamiya ◽  
Daichi Shiotsu ◽  
Ichiro M. Omori ◽  
...  

AbstractIndividuals with autism spectrum disorders (ASDs) exhibit atypical sensory characteristics, impaired social skills, deficits in verbal and nonverbal communication, and restricted and repetitive behaviors. The relationship between sensory characteristics and brain morphological changes in ASD remains unclear. In this study, we investigated the association between brain morphological changes and sensory characteristics in individuals with ASD using brain image analysis and a sensory profile test. Forty-three adults with ASD and 84 adults with typical development underwent brain image analysis using FreeSurfer. The brain cortex was divided into 64 regions, and the cortical thickness and volume of the limbic system were calculated. The sensory characteristics of the participants were evaluated using the Adolescent/Adult Sensory Profile (AASP). Correlation analysis was performed for cortical thickness, limbic area volume, and AASP scores. In the ASD group, there was a significant positive correlation between visual sensory sensitivity scores and the right lingual cortical thickness (r = 0.500). There were also significant negative correlations between visual sensation avoiding scores and the right lateral orbitofrontal cortical thickness (r = −0.513), taste/smell sensation avoiding scores and the right hippocampal volume (r = −0.510), and taste/smell sensation avoiding scores and the left hippocampal volume (r = −0.540). The study identified associations among the lingual cortical thickness, lateral orbitofrontal cortical thickness, and hippocampal volume and sensory characteristics. These findings suggest that brain morphological changes may trigger sensory symptoms in adults with ASD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Evan Fletcher ◽  
Charles DeCarli ◽  
Audrey P. Fan ◽  
Alexander Knaack

Deep learning implementations using convolutional neural nets have recently demonstrated promise in many areas of medical imaging. In this article we lay out the methods by which we have achieved consistently high quality, high throughput computation of intra-cranial segmentation from whole head magnetic resonance images, an essential but typically time-consuming bottleneck for brain image analysis. We refer to this output as “production-level” because it is suitable for routine use in processing pipelines. Training and testing with an extremely large archive of structural images, our segmentation algorithm performs uniformly well over a wide variety of separate national imaging cohorts, giving Dice metric scores exceeding those of other recent deep learning brain extractions. We describe the components involved to achieve this performance, including size, variety and quality of ground truth, and appropriate neural net architecture. We demonstrate the crucial role of appropriately large and varied datasets, suggesting a less prominent role for algorithm development beyond a threshold of capability.


2021 ◽  
Author(s):  
Hyemin Han

In the current chapter, I examined the relationship between the cerebellum, emotion, and morality with evidence from large-scale neuroimaging data analysis. Although the aforementioned relationship has not been well studied in neuroscience, recent studies have shown that the cerebellum is closely associated with emotional and social processes at the neural level. Also, debates in the field of moral philosophy, psychology, and neuroscience have supported the importance of emotion in moral functioning. Thus, I explored the potentially important but less-studies topic with NeuroSynth, a tool for large-scale brain image analysis, while addressing issues associated with reverse inference. The result from analysis demonstrated that brain regions in the cerebellum, the right Crus I and Crus II in particular, were specifically associated with morality in general. I discussed the potential implications of the finding based on clinical and functional neuroimaging studies of the cerebellum, emotional functioning, and neural networks for diverse psychological processes.


2021 ◽  
Vol 11 (4) ◽  
pp. 1675
Author(s):  
Darwin Castillo ◽  
Vasudevan Lakshminarayanan ◽  
María José Rodríguez-Álvarez

Medical brain image analysis is a necessary step in computer-assisted/computer-aided diagnosis (CAD) systems. Advancements in both hardware and software in the past few years have led to improved segmentation and classification of various diseases. In the present work, we review the published literature on systems and algorithms that allow for classification, identification, and detection of white matter hyperintensities (WMHs) of brain magnetic resonance (MR) images, specifically in cases of ischemic stroke and demyelinating diseases. For the selection criteria, we used bibliometric networks. Of a total of 140 documents, we selected 38 articles that deal with the main objectives of this study. Based on the analysis and discussion of the revised documents, there is constant growth in the research and development of new deep learning models to achieve the highest accuracy and reliability of the segmentation of ischemic and demyelinating lesions. Models with good performance metrics (e.g., Dice similarity coefficient, DSC: 0.99) were found; however, there is little practical application due to the use of small datasets and a lack of reproducibility. Therefore, the main conclusion is that there should be multidisciplinary research groups to overcome the gap between CAD developments and their deployment in the clinical environment.


Author(s):  
Darwin Castillo ◽  
Vasudevan Lakshminarayanan ◽  
María José Rodríguez-Álvarez

Medical brain image analysis is a necessary step in the Computers Assisted /Aided Diagnosis (CAD) systems. Advancements in both hardware and software in the past few years have led to improved segmentation and classification of various diseases. In the present work, we review the published literature on systems and algorithms that allow for classification, identification, and detection of White Matter Hyperintensities (WMHs) of brain MRI images specifically in cases of ischemic stroke and demyelinating diseases. For the selection criteria, we used the bibliometric networks. Out of a total of 140 documents we selected 38 articles that deal with the main objectives of this study. Based on the analysis and discussion of the revised documents, there is constant growth in the research and proposal of new models of deep learning to achieve the highest accuracy and reliability of the segmentation of ischemic and demyelinating lesions. Models with indicators (Dice Score, DSC: 0.99) were found, however with little practical application due to the uses of small datasets and lack of reproducibility. Therefore, the main conclusion is to establish multidisciplinary research groups to overcome the gap between CAD developments and their complete utilization in the clinical environment.


Author(s):  
مینا عاطف ◽  
اندرو کرم ◽  
کیرلس بولس ◽  
ماریو رؤوف ◽  
غادة خریبة ◽  
...  

2020 ◽  
Vol 94 (1) ◽  
Author(s):  
David M. Young ◽  
Clif Duhn ◽  
Michael Gilson ◽  
Mai Nojima ◽  
Deniz Yuruk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document