lost city hydrothermal field
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 2)

Geology ◽  
2021 ◽  
Author(s):  
Susan Q. Lang ◽  
Marvin D. Lilley ◽  
Tamara Baumberger ◽  
Gretchen L. Früh-Green ◽  
Sharon L. Walker ◽  
...  

Hydrogen is an important energy source for subsurface microbial communities, but its availability beyond the flow focused through hydrothermal chimneys is largely unknown. We report the widespread export of H2 across the Atlantis Massif oceanic core complex (30°N, Mid-Atlantic Ridge; up to 44 nM), which is distinct from the circulation system feeding the Lost City Hydrothermal Field (LCHF) on the massif’s southern wall. Methane (CH4) abundances are generally low to undetectable (<3 nM) in fluids that are not derived from the LCHF. Reducing fluids exit the seafloor over a wide geographical area and depth range, including the summit of the massif and along steep areas of mass wasting east of the field. The depth of the fluids in the water column and their H2/CH4 ratios indicate that some are sourced separately from the LCHF. We argue that extensive H2 export is the natural consequence of fluid flow pathways strongly influenced by tectonic features and the volume and density changes that occur when ultramafic rocks react to form serpentinites, producing H2 as a by-product. Furthermore, the circulation of H2-rich fluids through uplifted mantle rocks at moderate temperatures provides geographically expansive and stable environmental conditions for the early evolution of biochemical pathways. These results provide insight into the spatial extent of H2- and CH4-bearing fluids associated with serpentinization, independent of the focused flow emanating from the LCHF.


2020 ◽  
Vol 24 (4) ◽  
pp. 47-56
Author(s):  
Katarzyna Kubiak ◽  
Jan Kotlarz ◽  
Natalia Zalewska ◽  
Urszula Zielenkiewicz

Enceladus, Saturnian satellite, is a very significant object for astrobiologists due to the presence of liquid water that forms the ice-covered ocean. Water ice geysers escape from the south pole region through cracks in the ice shield. During the Cassini flight, the probe took samples of plumes matter recognizing besides other methane and molecular hydrogen. Since then, hypotheses have been formulated that life forms similar to those found in the Lost City Hydrothermal Field in the Atlantic ocean bottom may occur near Enceladus’ hydrothermal chimneys. In our work, we analyzed the possibility of a microbial factor detection in the Enceladus geysers. We used as model organisms selected extremophiles. We investigated multi-spectral cameras and mass spectrometers intended for use in mission proposals to Enceladus: Enceladus Orbiter, Enceladus Life Finder, The Explorer of Enceladus and Titan and THEO mission. The review pointed that the configuration of mass spectrometers and the proposed parameters of scientific orbits are appropriate for detecting volatile organic compounds corresponding to selected microorganisms such as aldehyde, ethanol, benzene, toluene, indole, or violacein. The possible presence of a microbiological component with physical dimensions in the order of several micrometres can only be observed for areas of geyser formation at their higher density (> 10 ppm) and with the occurrence of the “snowing microbes” phenomenon. We have found that particularly useful optical channels are 780–975 nm, 860–910 nm, and 5.0–5.3 µm.


2020 ◽  
Author(s):  
Antoine Boutier ◽  
Alberto Vitale Brovarone ◽  
Isabelle Martinez ◽  
Olivier Sissmann ◽  
Sara Mana

<p>Serpentinization is the process of hydroxylation of olivine-rich ultramafic rocks to produce minerals such as serpentine, brucite, magnetite, and may release H<sub>2</sub>. The hydrogen produced through serpentinization reactions can be involved in abiotic reaction pathways leading to the genesis of abiotic light hydrocarbons such as methane (CH<sub>4</sub>). Examples of this phenomenon exist at the seafloor, such as at the serpentinite-hosted Lost City hydrothermal field, and on land in ophiolites at relatively shallow depths. However, the possibility for serpentinization to occur at greater depths, especially in subduction zones, raises new questions on the genesis of abiotic hydrocarbons at convergent margin and its impact on the deep carbon cycle. High-pressure ultramafic bodies exhumed in metamorphic belts can provide insights on the mechanisms of high-pressure serpentinization in subduction zones and on the chemistry of the resulting fluids. This study focuses on the ultramafic Belvidere Mountain complex belonging to the Appalachian belt of northern Vermont, USA. Microstructures show overgrowth of olivine by delicate antigorite crystals, suggesting olivine serpentinization at high-temperature consistent with the subduction evolution of the Belvidere Mountain complex.  Fluid inclusion trails cross-cutting the primary olivine relicts  suggest their formation during the antigorite serpentinization event. MicroRaman spectroscopy on the fluid inclusions reveals a CH<sub>4</sub>-rich gaseous composition, with trace of N<sub>2</sub>, NH<sub>3</sub> and S-H compound. Moreover, the precipitation of daughter minerals of lizardite and brucite in the fluid inclusions indicate the initial presence of H<sub>2</sub>O in the fluid. Secondary olivine is observed at the rim of pseudomorphosed primary pyroxenes (bastite), and has higher forsterite (Fo<sub>95</sub>) content with respect to the primary olivine (Fo<sub>92</sub>), suggesting either a syn-serpentinization olivine precipitation in the subduction zone, or a successive partial dehydration of the antigorite during metamorphism. Decreasing oxygen fugacity during serpentinization and related abiotic reduction of carbon at high-pressure conditions is proposed at the origin of methane in the fluid inclusions. This potentially places the Belvidere Mountain complex as an example of deep serpentinization related to high-pressure genesis of abiotic methane.</p>


2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Julia M. McGonigle ◽  
Susan Q. Lang ◽  
William J. Brazelton

ABSTRACT The Lost City hydrothermal field on the Mid-Atlantic Ridge supports dense microbial life on the lofty calcium carbonate chimney structures. The vent field is fueled by chemical reactions between the ultramafic rock under the chimneys and ambient seawater. These serpentinization reactions provide reducing power (as hydrogen gas) and organic compounds that can serve as microbial food; the most abundant of these are methane and formate. Previous studies have characterized the interior of the chimneys as a single-species biofilm inhabited by the Lost City Methanosarcinales, but they also indicated that this methanogen is unable to metabolize formate. The new metagenomic results presented here indicate that carbon cycling in these Lost City chimney biofilms could depend on the metabolism of formate by Chloroflexi populations. Additionally, we present evidence for metabolically diverse, formate-utilizing Sulfurovum populations and new genomic and phylogenetic insights into the unique Lost City Methanosarcinales. IMPORTANCE Primitive forms of life may have originated around hydrothermal vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fueled by just rock and water, provides an analog for not only primitive ecosystems but also potential extraterrestrial rock-powered ecosystems. The microscopic life covering the towering chimney structures at the Lost City has been previously documented, yet little is known about the carbon cycling in this ecosystem. These results provide a better understanding of how carbon from the deep subsurface can fuel rich microbial ecosystems on the seafloor.


Author(s):  
Susan Q. Lang ◽  
William J. Brazelton

The Lost City hydrothermal field is a dramatic example of the biological potential of serpentinization. Microbial life is prevalent throughout the Lost City chimneys, powered by the hydrogen gas and organic molecules produced by serpentinization and its associated geochemical reactions. Microbial life in the serpentinite subsurface below the Lost City chimneys, however, is unlikely to be as dense or active. The marine serpentinite subsurface poses serious challenges for microbial activity, including low porosities, the combination of stressors of elevated temperature, high pH and a lack of bioavailable ∑CO 2 . A better understanding of the biological opportunities and challenges in serpentinizing systems would provide important insights into the total habitable volume of Earth's crust and for the potential of the origin and persistence of life in Earth's subsurface environments. Furthermore, the limitations to life in serpentinizing subsurface environments on Earth have significant implications for the habitability of subsurface environments on ocean worlds such as Europa and Enceladus. Here, we review the requirements and limitations of life in serpentinizing systems, informed by our research at the Lost City and the underwater mountain on which it resides, the Atlantis Massif. This article is part of a discussion meeting issue ‘Serpentinite in the Earth System’.


2019 ◽  
Author(s):  
Julia M. McGonigle ◽  
Susan Q. Lang ◽  
William J. Brazelton

ABSTRACTThe Lost City hydrothermal field on the Mid-Atlantic Ridge supports dense microbial life on the lofty calcium carbonate chimney structures. The vent field is fueled by chemical reactions between the ultramafic rock under the chimneys and ambient seawater. These serpentinization reactions provide reducing power (as hydrogen gas) and organic compounds that can serve as microbial food; the most abundant of these are methane and formate. Previous studies have characterized the interior of the chimneys as a single-species biofilm inhabited by the Lost City Methanosarcinales, but also indicated that this methanogen is unable to metabolize formate. The new metagenomic results presented here indicate that carbon cycling in these Lost City chimney biofilms could depend on the metabolism of formate by low-abundance Chloroflexi species. Additionally, we present evidence that metabolically diverse, formate-utilizing Sulfurovum species are living in the transition zone between the interior and exterior of the chimneys.IMPORTANCEPrimitive forms of life may have originated around hydrothermal vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fueled by just rock and water, provides an analog for not only primitive ecosystems but also extraterrestrial ecosystems that might support life. The microscopic life covering towering chimney structures at the Lost City has been well characterized, yet little is known about the carbon cycling in this ecosystem. These results provide a better understanding of how carbon from the deep subsurface can fuel rich microbial ecosystems on the seafloor.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Susan Q. Lang ◽  
Gretchen L. Früh-Green ◽  
Stefano M. Bernasconi ◽  
William J. Brazelton ◽  
Matthew O. Schrenk ◽  
...  

Astrobiology ◽  
2017 ◽  
Vol 17 (11) ◽  
pp. 1138-1160 ◽  
Author(s):  
Elena S. Amador ◽  
Joshua L. Bandfield ◽  
William J. Brazelton ◽  
Deborah Kelley

Sign in / Sign up

Export Citation Format

Share Document