scholarly journals Investigation of Finishing Aluminum Alloy A5052 Using the Magnetic Abrasive Finishing Combined with Electrolytic Process

Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 78
Author(s):  
Baijun Xing ◽  
Yanhua Zou

The magnetic abrasive finishing combined with electrolytic (EMAF) process was proposed to improve the finishing efficiency of the traditional magnetic abrasive finishing (MAF) process. Since the EMAF process contains electrolysis reactions, the machining mechanism of processing different metal is different. In this paper, a series of experiments were conducted to explore the feasibility of using the compound processing tool to finish aluminum alloy A5052, and to preliminary explore the machining mechanism. Surface roughness and material removal are used to evaluate the finishing effect and the finishing efficiency, respectively. The EMAF processing current curve is used to evaluate and analyze the EMAF process. The feasibility of the EMAF processing is proved by the analysis of simulations and the experimental results. Finally, through a series of exploration experiments and parameter optimization experiments, the main conclusions are as follows: (1) Compared with the traditional MAF process, when finishing the surface of aluminum alloy A5052 by the same compound processing tool and at the same experimental conditions (except the electrolysis conditions), the EMAF process, which includes electrolysis reactions, can achieve higher finishing efficiency. (2) In this study, when the working gap is 1 mm and the concentration of NaNO3 solution is 15%, the recommended processing voltage is about 3.4 V.

2007 ◽  
Vol 359-360 ◽  
pp. 300-304
Author(s):  
Shu Ren Zhang ◽  
Li Feng Yang ◽  
Guo Xiang Wu

Magnetic Abrasive Finishing (MAF) is relatively a new finishing technique which employs the magnetic force for finishing. In this paper, the influence of the magnetic flux density on the finishing pressure and the finishing efficiency during finishing is analyzed. With the cylindrical magnetic finishing apparatus developed by the author, a series of experiments on finishing the cylindrical surfaces of nonferromagnetic materials and ferromagnetic materials are carried out. To solve the problems of low finishing efficiency and abrasive particles escaping easily because of lack of finishing pressure during finishing nonferromagnetic materials, a new method of increasing the finishing pressure by using the “pressure-increasing bag” in the finishing system is put forward. A lot of comparative experiments on finishing nonferromagnetic materials with the “pressure-increasing bag” and without the “pressure-increasing bag” are performed. Under the same experimental conditions, the amount of diameter-reduction d is increased from 1μm to 1.88μm and the surface roughness is improved from Ra0.315μm to Ra0.250μm by using the “pressure-increasing bag”. The results show that the finishing pressure is increased obviously and the MAF efficiency of finishing nonferromagnetic materials is improved dramatically by using the “pressure-increasing bag”.


2006 ◽  
Vol 304-305 ◽  
pp. 384-388
Author(s):  
Shu Ren Zhang ◽  
W.N. Liu

Magnetic Abrasive Finishing (MAF) is relatively a new finishing technique that employs the magnetic force for finishing. In the paper, finishing mechanism of MAF is studied and four self-sharpening modes of abrasive particles are put forward. With the cylindrical magnetic abrasive apparatus designed and made by the author, a series of experiments on finishing the cylindrical surfaces of nonferromagnetic materials and ferromagnetic materials are carried out. The influence of technical parameters (finishing speed, feed speed, finishing time and so on) on finishing performance is analyzed. Choosing the optimized technical parameters, , the surface roughness of ferromagnetic materials changes from Ra 0.825µm to Ra 0.045µm after the 12-minute finishing experiment; the surface roughness of nonferromagnetic materials changes from Ra 0.434µm to Ra 0.096µm after the 20-minute finishing experiment.


2008 ◽  
Vol 53-54 ◽  
pp. 57-63 ◽  
Author(s):  
Shao Hui Yin ◽  
Yu Wang ◽  
Takeo Shinmura ◽  
Yong Jian Zhu ◽  
Feng Jun Chen

This paper proposed a viewpoint to explain why vibration assistance may increase material removal rate (MRR) in vibration-assisted magnetic abrasive finishing process. A series of experiments on vibration-assisted finishing have been carried out. On the basis of these experiments, the finishing characteristics are represented summarily. It was shown that the increase in material rate is mainly due to an increase in material removal per unit working distance.


2009 ◽  
Vol 76-78 ◽  
pp. 246-251
Author(s):  
Shao Hui Yin ◽  
Yu Wang ◽  
Han Huang ◽  
Yong Jian Zhu ◽  
Yu Feng Fan ◽  
...  

This paper investigates the effect of horizontal vibration assistance on surface roughness in magnetic abrasive finishing, and the material removal mechanism associated. The experiments on vibration-assisted finishing have clearly indicated that the improvement of surface roughness is mainly attributed to the cross-cutting effect of abrasives.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093200
Author(s):  
Anyuan Jiao ◽  
Guofu Zhang ◽  
Binghong Liu ◽  
Weijun Liu

Based on the mechanism of magnetic abrasive finishing, the 7075 aluminum alloy (Al7075) was used in the experimental study. In order to improve wall surface quality and to remove the edge burrs of the hole, a novel magnetic abrasive finishing process was proposed. First, the radial magnetizing pole for the inner surface finishing process was confirmed. The evaluation of magnet spinning speed, abrasive mesh, and abrasive filling amount on the diameter deviation of the hole and surface roughness of the inner wall was studied. According to the characteristics of magnetic abrasive finishing process, Taguchi’s method was used to carry out the test. Through the analysis of variance, the best process parameters were determined and verified. The inner surface roughness was further decreased and the surface morphology was more uniform after finishing process. Second, the edge burr removal process of the hole exit was also studied, and the geometry of the burrs was measured before and after the magnetic abrasive finishing process. The results show that the burrs were significantly removed and the burr removal efficiency was improved by 33.3% compared with the conventional magnetic abrasive finishing process. Finally, the improved magnetic abrasive finishing process is an effective method in improving finishing quality of the Al7075 holes.


2010 ◽  
Vol 297-301 ◽  
pp. 390-395
Author(s):  
Mehrdad Vahdati ◽  
E. Sadeghinia ◽  
Ali Shokuhfar

Technological requirements urges high technology industries using materials with advanced properties. Although it is compulsory using these materials due to their advantages, some of them should be tolerated because of their weak machining and mechanical properties. Attempts for qualitative machining of complex curves on many work pieces may result in the advent of new finishing techniques. One of the most newly introduced techniques is Magnetic Abrasive Finishing, MAF. In this paper a study on the effects of tool and work piece gap, and lubricant volume, on the roughness and material removal rate have been studied. The results show that setting the working gap to 3 mm and the lubricant volume to 0.7 ml, yields a change in surface roughness (Ra), and the material removal (MR) will gain its best result.


2021 ◽  
Vol 24 (1) ◽  
pp. 16-25
Author(s):  
Basma Luay Mahdi ◽  
Ali H. Kadhum

The traditional finishing method cannot keep up with recent labor market requirements, solve the problem of increasing production, improve the surface roughness and accuracy of workpiece. While the unconventional magnetic abrasive finishing (MAF) method has shown as a promising technique that can be used to finish complicated surfaces. MAF finishes metals, alloy, ceramic, and other materials that are difficult to finish by other processes. In another word, MAF improves the quality of surfaces with low cost. This paper focuses on optimize and study the effect of inductor and pole geometry (radius of hole, angle of core, angle of pole, radius of pole), on (surface roughness (Ra) and material removal weight (W)) and fined the optimum values that increase the efficiency of MAF method. Taguchi method employed to study the influence of geometry parameters and find the optimum values using orthogonal array L9. The results conclude that the most significant factor that effects change in surface roughness (ΔRa) and material removal weight(ΔW) are radius of the hole (R) and angle of core (α), respectively.


2020 ◽  
Vol 62 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Kandhasamy Suganeswaran ◽  
Rathinasamy Parameshwaran ◽  
Thangamuthu Mohanraj ◽  
Balasubramaniyam Meenakshipriya

2020 ◽  
Vol 111 (9-10) ◽  
pp. 2419-2439
Author(s):  
Tamal Ghosh ◽  
Yi Wang ◽  
Kristian Martinsen ◽  
Kesheng Wang

Abstract Optimization of the end milling process is a combinatorial task due to the involvement of a large number of process variables and performance characteristics. Process-specific numerical models or mathematical functions are required for the evaluation of parametric combinations in order to improve the quality of the machined parts and machining time. This problem could be categorized as the offline data-driven optimization problem. For such problems, the surrogate or predictive models are useful, which could be employed to approximate the objective functions for the optimization algorithms. This paper presents a data-driven surrogate-assisted optimizer to model the end mill cutting of aluminum alloy on a desktop milling machine. To facilitate that, material removal rate (MRR), surface roughness (Ra), and cutting forces are considered as the functions of tool diameter, spindle speed, feed rate, and depth of cut. The principal methodology is developed using a Bayesian regularized neural network (surrogate) and a beetle antennae search algorithm (optimizer) to perform the process optimization. The relationships among the process responses are studied using Kohonen’s self-organizing map. The proposed methodology is successfully compared with three different optimization techniques and shown to outperform them with improvements of 40.98% for MRR and 10.56% for Ra. The proposed surrogate-assisted optimization method is prompt and efficient in handling the offline machining data. Finally, the validation has been done using the experimental end milling cutting carried out on aluminum alloy to measure the surface roughness, material removal rate, and cutting forces using dynamometer for the optimal cutting parameters on desktop milling center. From the estimated surface roughness value of 0.4651 μm, the optimal cutting parameters have given a maximum material removal rate of 44.027 mm3/s with less amplitude of cutting force on the workpiece. The obtained test results show that more optimal surface quality and material removal can be achieved with the optimal set of parameters.


Sign in / Sign up

Export Citation Format

Share Document