illusory percept
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Basil Wahn ◽  
Laura Schmitz ◽  
Alan Kingstone ◽  
Anne Böckler-Raettig

AbstractEye contact is a dynamic social signal that captures attention and plays a critical role in human communication. In particular, direct gaze often accompanies communicative acts in an ostensive function: a speaker directs her gaze towards the addressee to highlight the fact that this message is being intentionally communicated to her. The addressee, in turn, integrates the speaker’s auditory and visual speech signals (i.e., her vocal sounds and lip movements) into a unitary percept. It is an open question whether the speaker’s gaze affects how the addressee integrates the speaker’s multisensory speech signals. We investigated this question using the classic McGurk illusion, an illusory percept created by presenting mismatching auditory (vocal sounds) and visual information (speaker’s lip movements). Specifically, we manipulated whether the speaker (a) moved his eyelids up/down (i.e., open/closed his eyes) prior to speaking or did not show any eye motion, and (b) spoke with open or closed eyes. When the speaker’s eyes moved (i.e., opened or closed) before an utterance, and when the speaker spoke with closed eyes, the McGurk illusion was weakened (i.e., addressees reported significantly fewer illusory percepts). In line with previous research, this suggests that motion (opening or closing), as well as the closed state of the speaker’s eyes, captured addressees’ attention, thereby reducing the influence of the speaker’s lip movements on the addressees’ audiovisual integration process. Our findings reaffirm the power of speaker gaze to guide attention, showing that its dynamics can modulate low-level processes such as the integration of multisensory speech signals.


2021 ◽  
Vol 13 ◽  
Author(s):  
Alexandra N. Scurry ◽  
Zachary Lovelady ◽  
Daniela M. Lemus ◽  
Fang Jiang

Impaired temporal perception of multisensory cues is a common phenomenon observed in older adults that can lead to unreliable percepts of the external world. For instance, the sound induced flash illusion (SIFI) can induce an illusory percept of a second flash by presenting a beep close in time to an initial flash-beep pair. Older adults that have enhanced susceptibility to a fall demonstrate significantly stronger illusion percepts during the SIFI task compared to those older adults without any history of falling. We hypothesize that a global inhibitory deficit may be driving the impairments across both postural stability and multisensory function in older adults with a fall history (FH). We investigated oscillatory activity and perceptual performance during the SIFI task, to understand how active sensory processing, measured by gamma (30–80 Hz) power, was regulated by alpha activity (8–13 Hz), oscillations that reflect inhibitory control. Compared to young adults (YA), the FH and non-faller (NF) groups demonstrated enhanced susceptibility to the SIFI. Further, the FH group had significantly greater illusion strength compared to the NF group. The FH group also showed significantly impaired performance relative to YA during congruent trials (2 flash-beep pairs resulting in veridical perception of 2 flashes). In illusion compared to non-illusion trials, the NF group demonstrated reduced alpha power (or diminished inhibitory control). Relative to YA and NF, the FH group showed reduced phase-amplitude coupling between alpha and gamma activity in non-illusion trials. This loss of inhibitory capacity over sensory processing in FH compared to NF suggests a more severe change than that consequent of natural aging.


2021 ◽  
Author(s):  
Niall Gavin ◽  
David McGovern ◽  
Rebecca Hirst

The sound-induced flash illusion occurs when a rapidly presented visual stimulus is accompanied by two auditory stimuli, creating the illusory percept of two visual stimuli. While much research has focused on how the temporal proximity of the audiovisual stimuli impacts susceptibility to the illusion, comparatively less research has been dedicated to investigating the impact of spatial manipulations. Here, we aimed to assess whether manipulating the eccentricity of visual flash stimuli altered the properties of the temporal binding window associated with the SIFI. Twenty participants were required to report whether they perceived one or two flashes that were concurrently presented with one or two beeps. Visual stimuli were presented at one of four different retinal eccentricities (2.5, 5, 7.5 or 10 degrees below fixation) and audiovisual stimuli were separated by one of eight stimulus-onset asynchronies. In keeping with previous findings, increasing stimulus-onset asynchrony between the auditory and visual stimuli led to a marked decrease in susceptibility to the illusion allowing us to estimate the width and amplitude of the temporal binding window. However, varying the eccentricity of the visual stimulus had no effect on either the width or the peak amplitude of the temporal binding window, with a similar pattern of results observed for both the “fission” and “fusion” variants of the illusion. Thus, spatial manipulations of the audiovisual stimuli used to elicit the SIFI appear to have a weaker effect on the integration of sensory signals than temporal manipulations, a finding which has implications for neuroanatomical models of multisensory integration.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jason S. Chan ◽  
Michael Wibral ◽  
Cerisa Stawowsky ◽  
Mareike Brandl ◽  
Saskia Helbling ◽  
...  

Aging is accompanied by unisensory decline. To compensate for this, two complementary strategies are potentially relied upon increasingly: first, older adults integrate more information from different sensory organs. Second, according to the predictive coding (PC) model, we form “templates” (internal models or “priors”) of the environment through our experiences. It is through increased life experience that older adults may rely more on these templates compared to younger adults. Multisensory integration and predictive coding would be effective strategies for the perception of near-threshold stimuli, which may however come at the cost of integrating irrelevant information. Both strategies can be studied in multisensory illusions because these require the integration of different sensory information, as well as an internal model of the world that can take precedence over sensory input. Here, we elicited a classic multisensory illusion, the sound-induced flash illusion, in younger (mean: 27 years, N = 25) and older (mean: 67 years, N = 28) adult participants while recording the magnetoencephalogram. Older adults perceived more illusions than younger adults. Older adults had increased pre-stimulus beta-band activity compared to younger adults as predicted by microcircuit theories of predictive coding, which suggest priors and predictions are linked to beta-band activity. Transfer entropy analysis and dynamic causal modeling of pre-stimulus magnetoencephalography data revealed a stronger illusion-related modulation of cross-modal connectivity from auditory to visual cortices in older compared to younger adults. We interpret this as the neural correlate of increased reliance on a cross-modal predictive template in older adults leading to the illusory percept.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mariel G. Gonzales ◽  
Kristina C. Backer ◽  
Brenna Mandujano ◽  
Antoine J. Shahin

The McGurk illusion occurs when listeners hear an illusory percept (i.e., “da”), resulting from mismatched pairings of audiovisual (AV) speech stimuli (i.e., auditory/ba/paired with visual/ga/). Hearing a third percept—distinct from both the auditory and visual input—has been used as evidence of AV fusion. We examined whether the McGurk illusion is instead driven by visual dominance, whereby the third percept, e.g., “da,” represents a default percept for visemes with an ambiguous place of articulation (POA), like/ga/. Participants watched videos of a talker uttering various consonant vowels (CVs) with (AV) and without (V-only) audios of/ba/. Individuals transcribed the CV they saw (V-only) or heard (AV). In the V-only condition, individuals predominantly saw “da”/“ta” when viewing CVs with indiscernible POAs. Likewise, in the AV condition, upon perceiving an illusion, they predominantly heard “da”/“ta” for CVs with indiscernible POAs. The illusion was stronger in individuals who exhibited weak/ba/auditory encoding (examined using a control auditory-only task). In Experiment2, we attempted to replicate these findings using stimuli recorded from a different talker. The V-only results were not replicated, but again individuals predominately heard “da”/“ta”/“tha” as an illusory percept for various AV combinations, and the illusion was stronger in individuals who exhibited weak/ba/auditory encoding. These results demonstrate that when visual CVs with indiscernible POAs are paired with a weakly encoded auditory/ba/, listeners default to hearing “da”/“ta”/“tha”—thus, tempering the AV fusion account, and favoring a default mechanism triggered when both AV stimuli are ambiguous.


2020 ◽  
Vol 117 (37) ◽  
pp. 23044-23053
Author(s):  
Margarida Agrochao ◽  
Ryosuke Tanaka ◽  
Emilio Salazar-Gatzimas ◽  
Damon A. Clark

Visual motion detection is one of the most important computations performed by visual circuits. Yet, we perceive vivid illusory motion in stationary, periodic luminance gradients that contain no true motion. This illusion is shared by diverse vertebrate species, but theories proposed to explain this illusion have remained difficult to test. Here, we demonstrate that in the fruit fly Drosophila, the illusory motion percept is generated by unbalanced contributions of direction-selective neurons’ responses to stationary edges. First, we found that flies, like humans, perceive sustained motion in the stationary gradients. The percept was abolished when the elementary motion detector neurons T4 and T5 were silenced. In vivo calcium imaging revealed that T4 and T5 neurons encode the location and polarity of stationary edges. Furthermore, our proposed mechanistic model allowed us to predictably manipulate both the magnitude and direction of the fly’s illusory percept by selectively silencing either T4 or T5 neurons. Interestingly, human brains possess the same mechanistic ingredients that drive our model in flies. When we adapted human observers to moving light edges or dark edges, we could manipulate the magnitude and direction of their percepts as well, suggesting that mechanisms similar to the fly’s may also underlie this illusion in humans. By taking a comparative approach that exploits Drosophila neurogenetics, our results provide a causal, mechanistic account for a long-known visual illusion. These results argue that this illusion arises from architectures for motion detection that are shared across phyla.


2019 ◽  
Author(s):  
Azaac Wei En Tan ◽  
Gerrit W Maus

Visual illusions, beyond their ability to entertain, reveal the “flaws” and limits of human perception, and how our visual senses can be fooled. In this study, we present a novel illusory percept generated by isoluminant bi-coloured square-wave gratings. We document the physical characteristics of the stimuli that affect the strength of the illusion and the illusory colours perceived, and consider potential mechanisms underlying this phenomenon. In line with our hypotheses, the results reveal that the strength of the illusion varies with the spatial frequency of the grating, and that the illusory percept is motion-dependent. Analysis of the illusory colours perceived reveals a relationship between the stimulus colours and the illusory colours perceived. This relationship demonstrates integration of the typically independent red-green parvocellular and blue-yellow koniocellular channels in the visual pathway. Overall, this pioneering study points towards a new mechanism of colour perception and integration, possibly in the early visual cortex. Possible future directions of research employing these coloured square-wave gratings are discussed.


2019 ◽  
Author(s):  
Violet Aurora Brown ◽  
Julia Feld Strand

The McGurk effect is a multisensory phenomenon in which discrepant auditory and visual speech signals typically result in an illusory percept (McGurk & MacDonald, 1976). McGurk stimuli are often used in studies assessing the attentional requirements of audiovisual integration (e.g., Alsius et al., 2005), but no study has directly compared the costs associated with integrating congruent versus incongruent audiovisual speech. Some evidence suggests that the McGurk effect may not be representative of naturalistic audiovisual speech processing—susceptibility to the McGurk effect is not associated with the ability to derive benefit from the addition of the visual signal (Van Engen et al., 2017), and distinct cortical regions are recruited when processing congruent versus incongruent speech (Erickson et al., 2014). In two experiments, one using response times to identify congruent and incongruent syllables and one using a dual-task paradigm, we assessed whether congruent and incongruent audiovisual speech incur different attentional costs. We demonstrated that response times to both the speech task (Experiment 1) and a secondary vibrotactile task (Experiment 2) were indistinguishable for congruent compared to incongruent syllables, but McGurk fusions were responded to more quickly than McGurk non-fusions. These results suggest that despite documented differences in how congruent and incongruent stimuli are processed (Erickson et al., 2014; Van Engen, Xie, & Chandrasekaran, 2017), they do not appear to differ in terms of processing time or effort. However, responses that result in McGurk fusions are processed more quickly than those that result in non-fusions, though attentional cost is comparable for the two response types.


2018 ◽  
Vol 6 (2) ◽  
pp. 125-153 ◽  
Author(s):  
Ronald P. Gruber ◽  
Ryan P. Smith ◽  
Richard A. Block

Flow and passage of time puzzles were analyzed by first clarifying their roles in the current multidisciplinary understanding of time in consciousness. All terms ( flow, passage, happening, becoming) are carefully defined. Flow and passage are defined differently, the former involving the psychological aspects of time and the latter involving the evolving universe and associated new cerebral events. The concept of the flow of time (FOT) is deconstructed into two levels: (a) a lower level ― a perceptual dynamic flux, or happening, or flow of events (not time); and (b) an upper level ― a cognitive view of past/present/future in which the observer seems to move from one to the other. With increasing evidence that all perception is a discrete continuity provided by illusory perceptual completion, the lower-level FOT is essentially the result of perceptual completion. The brain conflates the expression flow (passage, for some) of time with experiences of perceptual completion. However, this is an illusory percept. Converging evidence on the upper-level FOT reveals it as a false cognition that has the illusory percept of object persistence as its prerequisite. To research this argument, an experiment that temporarily removes the experience of the lower-level FOT might be conducted. The claustrum of the brain (arguably the center of consciousness) should be intermittently stimulated to create a scenario of discrete observations (involving all the senses) with long interstimulus intervals of non-consciousness and thereby no perceptual completion. Without perceptual completion, there should be no subjective experience of the lower-level FOT.


2017 ◽  
Author(s):  
Jason S. Chan ◽  
Michael Wibral ◽  
Patricia Wollstadt ◽  
Cerisa Stawowsky ◽  
Mareike Brandl ◽  
...  

AbstractAging is accompanied by unisensory decline; but to compensate for this, two complementary strategies are potentially relied upon increasingly: first, older adults integrate more information from different sensory organs. Second, according to predictive coding (PC) we form ‘templates’ (internal models or ‘priors’) of the environment through our experiences. It is through increased life experience that older adults may rely more on these templates compared to younger adults. Multisensory integration and predictive coding would be effective strategies for the perception of near-threshold stimuli, but they come at the cost of integrating irrelevant information. Their role can be studied in multisensory illusions because these require the integration of different sensory information, as well as an internal model of the world that can take precedence over sensory input. Here, we elicited a classic multisensory illusion, the sound-induced flash illusion, in younger (mean: 27 yrs) and older (mean: 67 yrs) adult participants while recording the magnetoencephalogram. Older adults perceived more illusions than younger adults. Older adults had increased pre-stimulus beta(β)-band activity compared to younger adults as predicted by microcircuit theories of predictive coding, which suggest priors and predictions are linked to β-band activity. In line with our hypothesis, transfer entropy analysis and dynamic causal models of pre-stimulus MEG data revealed a stronger illusion-related modulation of cross-modal connectivity from auditory to visual cortices in older compared to younger adults. We interpret this as the neural correlate of increased reliance on a cross-modal predictive template in older adults that is leading to the illusory percept.


Sign in / Sign up

Export Citation Format

Share Document