stipa lagascae
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2031
Author(s):  
Mounir Louhaichi ◽  
Mouldi Gamoun ◽  
Sawsan Hassan ◽  
Mohamed A. B. Abdallah

Rangelands of Tunisia show a great indigenous species diversity with considerable potential as forage for livestock. However, information on their fodder yield and quality is scanty and restricted to few species. The objective of the study was to evaluate the nutritive values of selected key perennial species based on their biomass yield, chemical composition, in vitro organic matter digestibility (IVOMD), and mineral composition. The species evaluated included four grass species (Stipa lagascae Roem. and Schult., Stipa tenacissima L., Stipagrostis plumosa (L.) Munro ex T. Anderson, and Stipagrostis pungens (Desf.) de Winter.) and eight shrub species (Anthyllis henoniana Coss. ex Batt., Argyrolobium uniflorum (Deene.) Jaub. and Spach., Echiochilon fruticosum Desf., Gymnocarpos decander Forssk., Helianthemum kahiricum Delile., Helianthemum lippii (L.) Dum. Cours., Plantago albicans L. and Rhanterium suaveolens Desf.). Results showed that shrub species contained higher concentrations of the crude protein (CP), acid detergent lignin (ADL), but lower neutral detergent fiber (aNDFom) and acid detergent fiber (ADFom) concentrations than grasses. The greatest concentration of CP was 135 g/kg DM for R. suaveolens. The greatest aNDFom concentration was found within the grasses with maximum of 744.5 g/kg DM in S. plumosa. The shrub species E. fruticosum, A. uniflorum, P. albicans, G. decander, R. suaveolens, and A. henoniana had the highest IVOMD with over 500 g/kg DM and have the potential to supply energy to livestock. Overall, the moderate to high protein, low fiber, and high in vitro digestibility measured for shrubs, suggest they have high nutritional values and can be used to enhance local livestock production.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 233
Author(s):  
Marwa Hamdani ◽  
Khouloud Krichen ◽  
Mohamed Chaieb

Aims of the study: The most important trends of the current climate variability is the scarcity of rains that affects arid ecosystems. The aim of this study was to explore the variability of leaf functional traits by which grassland species survive and resist drought and to investigate the potential link between resource use efficiency and water scarcity resistance strategies of species. Methods: Three grasses (Cenchrus ciliaris (C4), Stipa parviflora and Stipa lagascae (C3)) were established in a randomized block consisting of eleven replications. The seedlings were kept under increasing levels of water stress. In addition to their functional leaf traits, the rate of water loss and dimensional shrinkage were also measured. Key Results: Thicker and denser leaves, with higher dry matter contents, low specific leaf area and great capacity of water retention are considered among the grasses’ strategies of dehydration avoidance. Significant differences between the means of the functional traits were obtained. Furthermore, strong correlations among leaf traits were also detected (Spearman’s r exceeding 0.8). Conclusions: The results provide evidence that the studied grasses respond differently to drought by exhibiting a range of interspecific functional strategies that may ameliorate the resilience of grassland species communities under extreme drought events.


2019 ◽  
Vol 152 (3) ◽  
pp. 450-459
Author(s):  
Marjolein Visser ◽  
Amaury Beaugendre

Background and aims – With the perspective to reseed degraded drylands, grass seeds are often stocked for several years. This common practice overlooks conditional dormancy and the necessity to preserve it. This paper reports on the germination ecology of Stipa lagascae Roem. & Schult., which is a circum-Mediterranean winter-growing bunch grass of high grazing value. However, the published record on its germination ecology is scarce and inconsistent.Methods – This record was reassessed through a series of germination trials in combination with dormancy breaking treatments on seeds that were mainly harvested on a seed increase plot in South-Tunisia.Key results –The surprise finding was that Stipa lagascae exhibits a particular kind of conditional dormancy for many months after harvest. Whereas dormant seeds barely germinate at 10°C in classical Petri dishes or on germination tables, they germinate massively (but not fully) when allowed full contact with a water-saturated substrate at 7–10°C in boxes. Dehulling provokes fast germination of near 100% of the seeds, thus showing that the substrate effect at low temperatures breaks most but not all dormancy in a particular seed lot. This remaining or residual dormancy is not conditional, as it can only be broken through dehulling. There are thus two distinct germination windows: a very broad one for non-dormant seed and a narrow one for conditionally dormant seed.Conclusions – A pattern is suggested whereby each seed lot evolves through a continuum from full over conditional to non-dormancy and finally mortality. However, only the state of conditional dormancy times germination optimally with regard to the start of the winter growing season in South-Tunisia. Its ecological significance should be interpreted in combination with its trypanocarpy. Reseeding for restoration purposes and to render grazing value to depleted drylands should thus use conditionally dormant seed.


2017 ◽  
Vol 68 (9) ◽  
pp. 872 ◽  
Author(s):  
Raoudha Abdellaoui ◽  
Fayçal Boughalleb ◽  
Zohra Chebil ◽  
Maher Mahmoudi ◽  
Azaiez Ouled Belgacem

Soil and water salinity is a major environmental problem in the dry Mediterranean regions, affecting rangeland production. This study investigated the effects of salinity on the wild perennial grass (Poaceae) species Stipa lagascae R. & Sch., a potential forage plant that could be used to rehabilitate degraded rangelands in dry areas. In a laboratory, 3-month-old S. lagascae seedlings were subjected to increasing salt treatments (0–400 mm NaCl) for 45 days. Physiological and biochemical parameters such as leaf water potential (Ψw), leaf relative water content (RWC), proline, total soluble sugars, Na+, K+ and Ca2+ contents, and catalase, ascorbate peroxidase and glutathione reductase activities were measured. Total soluble sugars and proline concentrations increased and Ψw and RWC decreased with increasing salt concentrations. Lower salt concentrations induced a non-significant degradation of chlorophyll pigments. Shoot Na+ content increased with a salinity level, whereas shoot K+ and Ca2+ concentrations decreased and the K+ : Na+ ratio was lower. The salinity threshold, above which S. lagascae showed signs of damage, occurred at 300 mm. Plants have evolved reactive oxygen species (ROS) scavenging enzymes including catalase, ascorbate peroxidase and glutathione reductase, which provide cells with an efficient mechanism to neutralise ROS. The tolerance strategies of S. lagascae to moderate salinity seem to include osmotic adjustment through total soluble sugars and proline accumulation, and highly inducible antioxidative defence. Further investigations are necessary to study the effect of salt stress on distribution of ions (Na+, K+, Ca2+, Mg2+, Cl–, NO3–, SO42–) and osmotic adjustment. Photosynthesis and water-use efficiency parameters could be also useful tools.


Biologia ◽  
2015 ◽  
Vol 70 (8) ◽  
Author(s):  
Façal Boughalleb ◽  
Raoudha Abdellaoui ◽  
Zied Hadded ◽  
Mohammed Neffati

AbstractStipa lagascae R. & Sch. (perennial bunchgrass) is one of the most promising steppic species for arid and desert lands of Tunisia. The present study was designed to study the effect of drought on root and leaf anatomy, water relationship, and the growth of three- month-old S. lagascae plants, submitted to water deficit (5, 10, 15, 20, 30 days of withheld irrigation) and grown in pots in greenhouse conditions. The results show that water deficit treatments reduced the biomass accumulation (MS) and leaf water potential (Ψw) of plants. However, leaf relative water content (RWC) decreased significantly only at severe drought. The root’s anatomical features showed reduced root cross-sectional diameter under water deficit. Conversely, epidermis was unaffected by water stress. Moderate and/or severe water deficit (20-30 days) reduced significantly the cortex thickness, cortical cell size, stele diameter, xylem vessel diameter and the stele/root crosssectional ratio, while the number of cortical cells increased for severe water deficit. The cuticles and mesophyll of S. lagascae was thickened by moderate to severe drought and the entire lamina thickness was increased significantly by 5.8% only after 30 days of water deficit while epidermis was unaffected by water deficit. However, severe water deficit (30 days) decreased the width and the length of the bundle sheath. At the same time, the mesophyll cells size and both the xylem and phloem vessels diameter diminished by 12, 16.8 and 17.5%, respectively. Leaf rolling occurs as a response to water deficit and its level increases as the drought period is progressing in plants while reduced bulliform cells size occurred only at severe water deficit. Our findings suggest a complex network of root and leaf anatomical adaptations such as a reduced vessel size with lesser cortical and mesophyll parenchyma formation and increased leaf rolling. These proprieties are required for the maintenance of water potential and energy storage under water stress which can improve the resistance of S. lagascae to survive in extremely arid areas


2006 ◽  
Vol 65 (4) ◽  
pp. 682-687 ◽  
Author(s):  
A. Ouled Belgacem ◽  
M. Neffati ◽  
V.P. Papanastasis ◽  
M. Chaieb
Keyword(s):  
Seed Age ◽  

2006 ◽  
Vol 9 (3) ◽  
pp. 465-469 ◽  
Author(s):  
A. Ouled Belgacem ◽  
M. Chaieb . ◽  
M. Neffati . ◽  
J. Tiedeman .

Sign in / Sign up

Export Citation Format

Share Document