Engineered properties of polyurethane laden with beetroot and cerium oxide for cardiac patch application

2021 ◽  
pp. 152808372110542
Author(s):  
Saravana Kumar Jaganathan ◽  
Mohan Prasath Mani ◽  
Ahmad Fauzi bin Ismail ◽  
Ahmad Zahran Mohd Khudzari ◽  
Ahmad Athif Mohd Faudzi

The cardiac patch provides appropriate physicochemical properties and mechanical strength for the regeneration of damaged heart tissues. In this work, for the first-time, beetroot (BR) is blended with cerium oxide (CeO2) to produce nanofibrous polyurethane (PU) composite patch using electrospinning. The objective of this work is to fabricate the composite and examine its feasibility for cardiac patch applications. Morphological analysis revealed a dramatic reduction of fiber diameter of PU/BR (233 ± 175 nm) and PU/BR/CeO2 (331 ± 176 mm) compared to the pristine PU (994 ± 113 mm). Fourier transform infrared analysis (FTIR) analysis indicated functional peak intensities of the newly formed composite PU/BR and PU/BR/CeO2 were not similar to PU. The addition of beetroot rendered PU/BR hydrophilic (86° ± 2), whereas PU/BR/CeO2exhibited hydrophobic nature (99° ± 3). Atomic force microscopy (AFM) analysis depicted the reduced surface roughness of the PU/BR (312 ± 12 nm) and PU/BR/CeO2 (390 ± 125 nm) than the pristine PU (854 ± 32 nm). The incorporation of beetroot and CeO2 into PU enhanced the tensile strength compared with the pristine PU. The blood clotting time of PU/BR (APTT-204 ± 3 s and PT-103 ± 2 s) and PU/BR/CeO2 (APTT-205 ± 3 s and PT-105 ± 2s) were delayed significantly than the pristine PU(APTT-176 ± 2 s and PT-94 ± 2 s) as revealed in the coagulation study. Further, hemolysis assay showed the less toxic nature of the fabricated composites than the pristine PU. Hence, it can be inferred that the advanced physicochemical and blood compatible properties of electrospun PU/BR and PU/BR/CeO2 nanocomposite can be engineered successfully for cardiac patch applications.

2021 ◽  
pp. 152808372110066
Author(s):  
Mohan Prasath Mani ◽  
Saravana Kumar Jaganathan ◽  
Ahmad Zahran Md Khudzari

Electrospun polyurethane (PU) scaffolds were developed containing cerium oxide (CeO2). Photomicrograph of the composites revealed the diameter of the PU/CeO2 (264 ± 169 nm) was smaller than the polyurethane scaffold (994 ± 113 nm). The fabricated PU/CeO2 (110° ± 1) scaffold displayed a more hydrophobic nature as depicted by increasing contact angle compared to the pristine PU (105° ± 3). Fourier transform infrared spectroscopy (FTIR) results presented evidence for the cerium oxide presence in the PU matrix through the formation of the hydrogen bond. The surface roughness of PU/CeO2 (301 ± 52 nm) was reduced in comparison with pristine PU (854 ± 32 nm) as estimated in the atomic force microscopy (AFM) analysis. Cerium oxide enhanced the thermal and tensile behaviour of the pristine PU. Coagulation assays indicated delayed clotting time and a less toxic nature to red blood cells of PU/CeO2 than pristine PU. Further, the calcium deposition in the nanocomposites (10.5%) was higher compared to pure PU (2.4%) as showed in bone mineralization testing. Hence with these potent properties, PU/CeO2 holds as a promising candidate for bone regeneration.


Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Ahmed M. El-Baz ◽  
Rasha A. Mosbah ◽  
Reham M. Goda ◽  
Basem Mansour ◽  
Taranum Sultana ◽  
...  

Candida albicans is the causative agent of fatal systemic candidiasis. Due to limitations of antifungals, new drugs are needed. The anti-virulence effect of plant essential oils (EOs) was evaluated against clinical C. albicans isolates including cinnamon, clove, jasmine and rosemary oils. Biofilm, phospholipase and hemolysin were assessed phenotypically. EOs were evaluated for their anti-virulence activity using phenotypic methods as well as scanning electron microscopy (SEM) and atomic force microscopy (AFM). Among the C. albicans isolates, biofilm, phospholipase and hemolysins were detected in 40.4, 86.5 and 78.8% of isolates, respectively. Jasmine oil showed the highest anti-biofilm activity followed by cinnamon, clove and rosemary oils. SEM and AFM analysis showed reduced adherence and roughness in the presence of EOs. For phospholipase, rosemary oil was the most inhibitory, followed by jasmine, cinnamon and clove oils, and for hemolysins, cinnamon had the highest inhibition followed by jasmine, rosemary and clove oils. A molecular docking study revealed major EO constituents as promising inhibitors of the Als3 adhesive protein, with the highest binding for eugenol, followed by 1,8-cineole, 2-phenylthiolane and cinnamaldehyde. In conclusion, EOs have a promising inhibitory impact on Candida biofilm, phospholipase and hemolysin production, hence EOs could be used as potential antifungals that impact virulence factors.


2013 ◽  
Vol 1491 ◽  
Author(s):  
Jayme Keist ◽  
Christine Orme ◽  
Frances Ross ◽  
Dan Steingart ◽  
Paul Wright ◽  
...  

ABSTRACTThis investigation describes preliminary results of in-situ analysis of zinc deposition within an ionic liquid electrolyte utilizing electrochemical atomic force microscopy (EC AFM). From the AFM analysis, the morphology of the zinc deposition was analyzed by quantifying the surface roughness using height-height correlation functions. These results will be used to analyze the scattering data obtained from zinc deposition analysis utilizing an electrochemical ultra-small angle x-ray scattering (EC USAXS). The goal of this research is to link the early nucleation and growth behavior to the formation of detrimental morphologies.


2009 ◽  
Vol 13 (07) ◽  
pp. 774-778 ◽  
Author(s):  
Byung-Soon Kim ◽  
Young-A Son

In this study, self-assembled alternating film using poly(diallyldimethylammonium chloride) (PDDAC) and meso-tetrakis(4-carboxyphenyl)porphyrin (MTCP) was prepared as a multilayer deposition on glass substrate. This preparation technique for dye deposition may provide new feasibilities to achieve the manufacture of ultrathin films for nanotechnology application. The deposition films were characterized by UV-vis spectrophotometer and Atomic Force Microscopy (AFM) analysis. The results of UV-vis spectra showed that the absorbance characteristic of the multilayer films linearly increased with an increased number of PDDAC and MTCP bilayers. AFM analysis showed the film surface was relatively uniform and the progressive growth of layers was determined.


2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Jianhui Wu ◽  
Cailian Du ◽  
Jieming Zhang ◽  
Bo Yang ◽  
Andrew G. S. Cuthbertson ◽  
...  

Nanotechnology is increasingly being used in areas of pesticide production and pest management. This study reports the isolation and virulence of a new Metarhizium anisopliae isolate SM036, along with the synthesis and characterization of M. anisopliae–chitosan nanoparticles followed by studies on the efficacy of nanoparticles against Plutella xylostella. The newly identified strain proved pathogenic to P. xylostella under laboratory conditions. The characterization of M. anisopliae–chitosan nanoparticles through different analytical techniques showed the successful synthesis of nanoparticles. SEM and HRTEM images confirmed the synthesis of spherical-shaped nanoparticles; X-ray diffractogram showed strong peaks between 2θ values of 16–30°; and atomic force microscopy (AFM) analysis revealed a particle size of 75.83 nm for M. anisopliae–chitosan nanoparticles, respectively. The bioassay studies demonstrated that different concentrations of M. anisopliae–chitosan nanoparticles were highly effective against second instar P. xylostella under laboratory and semi-field conditions. These findings suggest that M. anisopliae–chitosan nanoparticles can potentially be used in biorational P. xylostella management programs.


2019 ◽  
Vol 15 (34) ◽  
pp. 106-113
Author(s):  
Estabraq T. Abdulla

The synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite have been measured in frequency range (50Hz - 600KHz) and in the temperature range from (30 to 160K). The results show the electrical conductivity of the nanocomposite is higher than pure PANI.


2016 ◽  
Vol 689 ◽  
pp. 55-59
Author(s):  
Serge Zhuiykov

Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nanoscale using energy dispersive X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.


2009 ◽  
Vol 1203 ◽  
Author(s):  
Humberto Gomez ◽  
Christopher L. Frewin ◽  
Ashok Kumar ◽  
Stephen Saddow ◽  
Christopher Locke

AbstractThe unique material characteristics of silicon carbide (SiC) and nanocrystalline diamond (NCD) present solutions to many problems in conventional MEMS applications and especially for biologically compatible devices. Both materials have a wide bandgap along with excellent optical, thermal and mechanical properties. Initial experiments were performed for NCD films grown on 3C-SiC using a microwave plasma chemical vapor deposition (MPCVD) reactor. It was observed from the atomic force microscopy (AFM) analysis that the NCD films on 3C-SiC possess a more uniform grain structure, with sizes ranging from approximately 5 – 10 nm, whereas on the Si surface, the NCD has large, non-unioform inclusions of grains ≈1 μm in size. The in vitro biocompatibility performance of NCD/3C-SiC was measured utilizing 2 immortalized neural cell lines: H4 human neuroglioma (ATCC #HTB-148) and PC12 rat pheochromocytoma (ATCC #CRL-1721). MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to measure viability of the cells for 96 hours and live/ fixed cell. AFM was performed to determine the general cell morphology. The H4 cell line shows a good biocompatibility level with hydrogen treated NCD as compared with the cell treated polystyrene control well, while the PC12 cells show decreased viability on the NCD surfaces.


Sign in / Sign up

Export Citation Format

Share Document