extracytoplasmic function sigma factor
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 11)

H-INDEX

27
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Haibi Wang ◽  
Amelia Lovelace ◽  
Amy Smith ◽  
Brian H Kvitko

In previous work, we determined the transcriptomic impacts of flg22 pre-induced Pattern Triggered Immunity (PTI) in Arabidopsis thaliana on the pathogen Pseudomonas syringae pv. tomato DC3000 (Pto). During PTI exposure we observed expression patterns in Pto reminiscent of those previously observed in a Pto algU mutant. AlgU is a conserved extracytoplasmic function sigma factor which has been observed to regulate over 950 genes in Pto in vitro. We sought to identify the AlgU regulon in planta.and which PTI-regulated genes overlapped with AlgU-regulated genes. In this study, we analyzed transcriptomic data from RNA-sequencing to identify the AlgU in planta regulon and its relationship with PTI. Our results showed that approximately 224 genes are induced by AlgU, while another 154 genes are downregulated by AlgU in Arabidopsis during early infection. Both stress response and virulence-associated genes were induced by AlgU, while the flagellar motility genes are downregulated by AlgU. Under the pre-induced PTI condition, more than half of these AlgU-regulated genes have lost induction/suppression in contrast to naive plants, and almost all function groups regulated by AlgU were affected by PTI.


Author(s):  
Mitsuo Ogura

Abstract We investigated the regulators of the glucose induction (GI) of the ECF-sigma genes sigX/M. During further screening of transposon-inserted mutants, we identified several regulators including an RNA component of RNase P (rnpB), which is required for tRNA maturation. A depletion of rnpB is known to trigger the stringent response. We showed evidence that the stringent response inhibited GI of sigX/M.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1626
Author(s):  
Onyedikachi Cecil Azuama ◽  
Sergio Ortiz ◽  
Luis Quirós-Guerrero ◽  
Emeline Bouffartigues ◽  
Damien Tortuel ◽  
...  

Pseudomonas aeruginosa is an important multidrug-resistant human pathogen by dint of its high intrinsic, acquired, and adaptive resistance mechanisms, causing great concern for immune-compromised individuals and public health. Additionally, P. aeruginosa resilience lies in the production of a myriad of virulence factors, which are known to be tightly regulated by the quorum sensing (QS) system. Anti-virulence therapy has been adopted as an innovative alternative approach to circumvent bacterial antibiotic resistance. Since plants are known repositories of natural phytochemicals, herein, we explored the anti-virulence potential of Azorella atacamensis, a medicinal plant from the Taira Atacama community (Calama, Chile), against P. aeruginosa. Interestingly, A. atacamensis extract (AaE) conferred a significant protection for human lung cells and Caenorhabditis elegans nematodes towards P. aeruginosa pathogenicity. The production of key virulence factors was decreased upon AaE exposure without affecting P. aeruginosa growth. In addition, AaE was able to decrease QS-molecules production. Furthermore, metabolite profiling of AaE and its derived fractions achieved by combination of a molecular network and in silico annotation allowed the putative identification of fourteen diterpenoids bearing a mulinane-like skeleton. Remarkably, this unique interesting group of diterpenoids seems to be responsible for the interference with virulence factors as well as on the perturbation of membrane homeostasis of P. aeruginosa. Hence, there was a significant increase in membrane stiffness, which appears to be modulated by the cell wall stress response ECFσ SigX, an extracytoplasmic function sigma factor involved in membrane homeostasis as well as P. aeruginosa virulence.


Sign in / Sign up

Export Citation Format

Share Document