scholarly journals Modeling Water-Induced Base Particle Migration in Loaded Granular Filters Using Discrete Element Method

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1976
Author(s):  
Gang Zhang ◽  
Jahanzaib Israr ◽  
Wenguo Ma ◽  
Hongyu Wang

Results are reported from a series of filtration tests simulated using coupled computational fluid dynamics and the discrete element method (CCFD-DEM) to investigate the factors controlling the mechanism of base particle erosion and their subsequent capture in loaded granular filters. Apart from geometrical factors such as particle and void sizes, the filter effectiveness was found to be controlled by the magnitudes of the hydraulic gradients and the effective stresses. The results of numerical simulations revealed that the base soils exhibit significant stress reduction that reduces further due to seepage, and the base particles migrate into the filter, bearing very low effective stresses (i.e., localized piping in base soil). Based on the limit equilibrium of hydraulic and mechanical constraints, a linear hydromechanical model has been proposed that governs the migration and capture of base particles in the filter (i.e., filter effectiveness avoiding piping) for cases simulated in this study. Nevertheless, the proposed model agrees closely with the simulation results of this study and those adopted from other published works, thereby showing a reasonable possibility of using the proposed model as a measure of retention capacity of loaded protective filters.

2004 ◽  
Vol 19 (2) ◽  
pp. 623-627 ◽  
Author(s):  
Kenji Yamane

In the pharmaceutical industries, mixing is a critical process. Pharmaceutical products consist of various components, including active ingredient and excipient. After mixing, we should get a homogeneous mixture to ensure the quality of the final products, such as tablets or capsules. For that reason, segregation is an unwanted phenomena in the mixing process. In this study, discrete-element method (DEM) was applied to investigate the mechanism of segregation in a rotating cylinder; basic equipment for powder mixing. In addition, segregation of particles in a rotating cylinder is a very interesting phenomenon and has captured the curiosity of not only industrial engineers, but also physicists. DEM can simulate segregation in a rotating cylinder three-dimensionally. In particular, radial segregation, which was quickly observed, was quantified by computing the granular temperature of the system. Furthermore, particle migration in axial direction, which may be the source of axial segregation, was also shown by the DEM simulation.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 101-108
Author(s):  
Daniel Varney ◽  
Douglas Bousfield

Cracking at the fold is a serious issue for many grades of coated paper and coated board. Some recent work has suggested methods to minimize this problem by using two or more coating layers of different properties. A discrete element method (DEM) has been used to model deformation events for single layer coating systems such as in-plain and out-of-plain tension, three-point bending, and a novel moving force picking simulation, but nothing has been reported related to multiple coating layers. In this paper, a DEM model has been expanded to predict the three-point bending response of a two-layer system. The main factors evaluated include the use of different binder systems in each layer and the ratio of the bottom and top layer weights. As in the past, the properties of the binder and the binder concentration are input parameters. The model can predict crack formation that is a function of these two sets of factors. In addition, the model can predict the flexural modulus, the maximum flexural stress, and the strain-at-failure. The predictions are qualitatively compared with experimental results reported in the literature.


2021 ◽  
Vol 910 ◽  
Author(s):  
Yiyang Jiang ◽  
Yu Guo ◽  
Zhaosheng Yu ◽  
Xia Hua ◽  
Jianzhong Lin ◽  
...  

Abstract


2021 ◽  
pp. 014459872110135
Author(s):  
Zhen Tian ◽  
Shuangxi Jing ◽  
Lijuan Zhao ◽  
Wei Liu ◽  
Shan Gao

The drum is the working mechanism of the coal shearer, and the coal loading performance of the drum is very important for the efficient and safe production of coal mine. In order to study the coal loading performance of the shearer drum, a discrete element model of coupling the drum and coal wall was established by combining the results of the coal property determination and the discrete element method. The movement of coal particles and the mass distribution in different areas were obtained, and the coal particle velocity and coal loading rate were analyzed under the conditions of different helix angles, rotation speeds, traction speeds and cutting depths. The results show that with the increase of helix angle, the coal loading first increases and then decreases; with the increase of cutting depth and traction speed, the coal loading rate decreases; the increase of rotation speed can improve the coal loading performance of drum to a certain extent. The research results show that the discrete element numerical simulation can accurately reflect the coal loading process of the shearer drum, which provides a more convenient, fast and low-cost method for the structural design of shearer drum and the improvement of coal loading performance.


Sign in / Sign up

Export Citation Format

Share Document