scholarly journals Can Anthropization Govern the Variation in Water Table Levels, Water Flow and Carbon Losses? A Case Study in Tropical Mountain Peatlands an Serra Do Espinhaço Meridional, Minas Gerais, Brazil.

Author(s):  
Uidemar Morais Barral ◽  
Alexandre Christófaro Silva ◽  
Cristiano Christófaro ◽  
Camila Rodrigues Costa ◽  
Aparecido Penafort Filho ◽  
...  

Abstract Peatlands are ecosystems formed by organic matter (~ 15% of the total mass) and water (~ 85% of the total mass), and constitute a particular type of free aquifer. They perform important hydrological functions by storing excess water during rainfall events, contributing to the baseflow of its rivers throughout the year. Degradation affects the dynamics of the water table, which, in turn, can influence the decomposition of organic matter content and the release of carbon into its waters. Its water retention capacity may also be compromised and reduce the volume of water available downstream, especially in the dry season. The aim of this study was to evaluate the effects of anthropic interference on variations in groundwater, water storage, and carbon flow in two tropical mountain peatlands, located at the head of the Araçuaí River, in Serra do Espinhaço Meridional (SdEM), Minas Gerais, Brazil. Groundwater levels were installed in piezometers distributed on a peatland located in a protected area (Natural Park) (Protected - TP) and in a peatland located outside the conservation unit (Anthropized - TA). Data were analyzed considering the daily rainfall recorded by an automatic weather station installed in the study area. From the data on precipitation and water table level variation, the specific yield (Sy) in the two peatlands was calculated. The observed flows and the mean monthly Sy on each piezometer were correlated and their significance was verified using the t test (p <0.05). The relationship between the observed flow and the mean monthly values of Sy obtained for the piezometers were verified through multiple regression. The specific yield correlated significantly with flow in both peatlands (p < 0.05). Multiple linear regression showed a coefficient of determination (R2) of 0.92 in both peatlands, indicating a direct relationship between Sy and observed flow. The TP presented a 43% smaller variation in the water table, a 7% higher specific yield and a specific flow rate of 13% higher in relation to the TA. The peatland located in a protected area retains more water, with less variation in flow throughout the year, and has less carbon output in the water compared to the anthropized peatland. The results demonstrated that anthropization is causing degradation of the peatland, reducing its water holding capacity and accelerating its carbon losses. In the medium term, these effects may lead to a drastic reduction in flow in the upper course of the Araçuaí River.

2009 ◽  
Vol 6 (3) ◽  
pp. 4563-4588
Author(s):  
S. L. Noorduijn ◽  
K. R. J. Smettem ◽  
R. Vogwill ◽  
A. Ghadouani

Abstract. Widespread clearing of native vegetation in Southwest Western Australia has led to land degradation associated with rising groundwater, secondary salinisation and waterlogging. Land degradation can be controlled by re-establishing native deep rooted perennial vegetation across parts of the landscape. Alley farming is an agroforestry practice where multiple perennial tree belts are planted in alternation with traditional agricultural crops. To identify the best configuration (belt width verses alley width) for controlling rising groundwater levels and providing viable economic returns, a large scale experiment was established in 1995. The experiment contains seven different alley farming designs, each with transects of piezometers running across tree belts into adjacent alleys to monitor changes in the groundwater level. Two control piezometers were also installed in an adjacent paddock. At the site groundwater is shallow (<3 m) and of poor quality (pH 3–5, Ec 2.1–45.9 mS cm−1) and so root water uptake from the saturated zone is limited. Simple hydrograph analysis did not identify any treatment effects on the water table response. Subsequent statistical analysis revealed that 20–30% of the variability in the water table data over the 12 year period was attributable to the alley farming experiment. It was hypothesized that a climate trend (reducing annual rainfall over time) may be obscuring the effect of the experiment. To further investigate the effect of the experiment on groundwater response, further hydrograph analysis was conducted to compare the trends in the control piezometers in relation to those located within the belts. A difference of 0.9 m was observed between the mean groundwater levels in the control piezometers and the mean levels in the perennial belt piezometers. For a mean specific yield of 0.03 m3 m−3 this equates to a small additional water use of 27 mm yr−1 by the perennial agroforestry system. It is concluded that declining annual rainfall is the principal control on hydrograph response at the site. Perennial biomass development and perennial root development (both laterally and vertically) exert only a small influence on water table depth. The implications of this study indicate that alley farming has a limited ability to control a rising water table in low lying areas with a shallow saline water table.


CATENA ◽  
2019 ◽  
Vol 180 ◽  
pp. 69-82 ◽  
Author(s):  
Alexandre Christófaro Silva ◽  
Maurício Soares Barbosa ◽  
Uidemar Morais Barral ◽  
Bárbara Pereira Christófaro Silva ◽  
José Sebastião Cunha Fernandes ◽  
...  

Soil Systems ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 2
Author(s):  
Laurent Jeanneau ◽  
Pauline Buysse ◽  
Marie Denis ◽  
Gérard Gruau ◽  
Patrice Petitjean ◽  
...  

The biogeochemistry of soil organic matter (SOM) is driven by a combination of stabilization and destabilization mechanisms. Among the various ways in which SOM is lost, soil moisture controls the leaching of dissolved organic and inorganic carbon (DOC and DIC) and CO2 fluxes (FCO2). The aim of this study was to investigate the impact of naturally occurring water table dynamics on the couplings between these three types of C losses. The DIC and DOC concentrations in the soil solutions and the FCO2 values at the soil surface were collected fortnightly over a nine-month period at four sampling points located along two topographic transects characterized by different water table dynamics. The water table depth, soil temperature and water-filled pore space (WFPS) were monitored at each site. Linear and nonlinear regressions were used to explore the couplings between C losses, WFPS and soil temperature. The dynamics of the water table seem to drive DOC solubilization, diffusion, and export mechanisms in addition to microbial processes and the equilibrium between DIC and CO2. The main descriptors of this water table dynamic were the residence time, return time and number of oscillations of the water table. Considering both transects, FCO2 was positively correlated with DOC, which highlights the importance of substrate accessibility for SOM mineralization. This paper emphasizes the importance of the water table dynamic for the coupling between SOM carbon losses.


2009 ◽  
Vol 13 (11) ◽  
pp. 2095-2104 ◽  
Author(s):  
S. L. Noorduijn ◽  
K. R. J. Smettem ◽  
R. Vogwill ◽  
A. Ghadouani

Abstract. Widespread clearing of native vegetation in Southwest Western Australia has led to land degradation associated with rising groundwater, secondary salinisation and waterlogging. Re-establishing deep-rooted perennial vegetation across parts of the landscape is one technique for managing land degradation. Alley farming is an agroforestry practice where multiple perennial tree belts are planted in alternation with traditional agricultural crops. To identify the best configuration (belt width versus alley width) for controlling rising groundwater levels and providing viable economic returns, a large scale experiment was established in 1995. The experiment contains seven different alley farming designs, each with transects of piezometers running across tree belts into adjacent alleys to monitor changes in the groundwater level. Two control piezometers were also installed in an adjacent paddock. Groundwater at the site is shallow (<3 m) and of poor quality (pH 3–5, Ec 2.1–45.9 mS cm−1) so root water uptake from the saturated zone is limited. Simple hydrograph analysis could not separate treatment effects on the water table response. Subsequent statistical analysis revealed that 20–30% of the variability in the water table data over the 12 year study period was attributable to the alley farming experiment. To futher investigate the effect of the experiment on groundwater response, additional hydrograph analysis was conducted to compare the trends in the control piezometers in relation to those located within the belts. A difference of 0.9 m was observed between the mean groundwater levels in the control piezometers and the mean levels in the perennial belt piezometers. For a mean specific yield of 0.03 m3 m−3 (standard deviation of 0.03 m3 m−3) this equates to an additional average annual water use of 27 mm yr−1 (standard deviation of 33 mm yr−1) by the perennial agroforestry system. It is concluded that declining annual rainfall is the principal control on hydrograph response at the site, whilst perennial biomass development has a lesser impact on water table depth.


1980 ◽  
Vol 11 (3-4) ◽  
pp. 159-168 ◽  
Author(s):  
Henrik Kærgaard

In an earlier paper I have shown an example of how long term drawdowns can be used for the computation of long term storage in artesian and semiartesian areas. In most cases the long term storage is more or less equivalent to the specific yield at the water table; the storage mechanisms of consolidation playing a minor role in long term situations. The specific yield in artesian areas is a very important parameter in the prediction of long term effects of ground water withdrawal. Especially the stream depletion will often mainly be governed by draw-downs in upper nonpumped aquifers near the water table, and these drawdowns depend to a great extent on the specific yield at the water table. A determination of long term storage will often necessitate long term draw-down data, however, under certain circumstances a determination can be made on the basis of a pumping test of limited duration (3-5 weeks) provided drawdown observations at the water table can be made. In this paper some formulas dealing with water table drawdowns in different geohydrologic systems are reviewed, and two cases in which these formulas have been used in practice are presented.


1986 ◽  
Vol 107 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Lindsey Caird ◽  
W. Holmes

SUMMARYInformation on the total organic matter intake, concentrates supplied (C), live weight (LW), week of lactation (WL), milk yield (MY), herbage organic matter digestibility (HOMD), herbage mass, sward height (SHT) or herbage allowance (HAL) measured individually for 357 cows at one of three sites was assembled. Observed intake was compared with intakes predicted by existing intake equations and new prediction equations based on regression models or regression and least-squares constants were developed. Major factors affecting intake were MY, LW, WL, C and HAL or SHT. Although HOMD was correlated with intake, better predictions were obtained when HOMD was omitted. There were differences between sites possibly associated with differences in measurement techniques.The predictive value of some existing equations and new equations were tested against independent sets of data. A simple equation (A) based on MY and LW (Ministry of Agriculture, Fisheries and Food, 1975) gave satisfactory average predictions but the mean square prediction error (MSPE) was high. The equations of Vadiveloo & Holmes (1979) adjusted for bias gave a relatively low MSPE. The preferred new equations for grazing cattle included MY, LW, WL, C and HAL or SHT, and their MSPE were similar to or lower than for indoor equations.The discussion indicates that a simple equation (A) would give adequate predictions for farm planning. The more detailed equations illustrate the inter-relations of animal with sward conditions and concentrate allowances. Predicted intakes may deviate from actual intakes because of short-term changes in body reserves.


2003 ◽  
Vol 34 (4) ◽  
pp. 361-386 ◽  
Author(s):  
L. Sipelgas ◽  
H. Arst ◽  
K. Kallio ◽  
A. Erm ◽  
P. Oja ◽  
...  

The main objective of the present study is to test various methods for describing the absorption spectra of coloured dissolved organic matter (CDOM) and to determine the numerical values of some optical parameters of CDOM in lakes with diverse water quality. First, the parameters of an exponential model in different spectral intervals were determined. In addition, the suitability of some other models for the approximation of CDOM spectra was estimated. Specific absorption coefficients of CDOM were calculated from the absorption coefficients and dissolved organic carbon (DOC) concentrations. The experimental initial data were differences between spectral attenuation coefficients of filtered and distilled water. Two datasets were used: 1) for 13 Estonian and 7 Finnish lakes (altogether 404 spectra between 350 and 700 nm) measured by the Estonian Marine Institute (EMI); 2) for 10 Finnish lakes (73 spectra) measured by the Finnish Environment Institute (FEI). The spectra of CDOM absorption coefficients (aCDOM) were calculated from experimental data taking into account the correction due to scattering properties of colloids in the filtered water. The total content of CDOM in natural waters of Estonian and Finnish lakes was expressed by means of aCDOM at the wavelength of 380 nm. It varied significantly, from 0.71 to 19.5 m−1, the mean value (of all the investigated lakes) being around 6.6 m−1. Slopes of the exponential approximation varied widely, from 0.006 to 0.03 nm−1. Averaged over all lakes values of slope for the interval 380-500 nm obtained from the EMI dataset are close to those obtained from the FEI dataset: from 0.014 nm−1 (without correction) to 0.016-0.017 nm-1 (with different types of correction). These results are in good correspondence with most published data. Attempts to describe the spectra in the region of 350-700 nm by means of hyperexponential functions (∽ exp(-αλη)) show that: (1) η &lt; 1 (in the case of traditional exponential approximation η = 1); (2) a promising idea is to seek the best fit only for wavelengths λ &gt; λ1, where λ1 will be chosen taking into account the real shape of aCDOM spectra. The mean value of the specific absorption coefficient (a*CDOM) at the wavelength 380 nm obtained in this study (0.44 L mg−1 m−1) is close to the values published in the literature, if we assume that a*CDOM (380) is calculated using the data of dissolved organic matter (DOM). The optically non-active fraction of DOM in our study was high and therefore a*CDOM (380) was considerably higher (1.01 L mg−1 m−1) than a*CDOM (380). The results of the present work could be used in the modeling of underwater light field as well as in the interpretation of radiation measurements and optical remote sensing results.


1963 ◽  
Vol 5 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. P. Langlands ◽  
J. L. Corbett ◽  
I. McDonald ◽  
G. W. Reid

SUMMARYThe mean daily digestible organic matter intake (D) of each of 47 adult sheep during a grazing period of mean length 48 days was estimated by the chromium sesquioxide/faecal nitrogen technique. Mean live-weights (W) and mean daily weight gains (G) were also measured.The regression of D on W and G, and the underlying or functional relationship between D, W and G were both estimated. From the underlying relationship, the preferred equation, the maintenance requirement of a 100 lb. sheep at pasture is estimated to be 1·02 lb. digestible organic matter daily. This value is 24% higher than the corresponding value for housed sheep obtained previously by us.This result is compared with other estimates of the energy cost of grazing and it is concluded that further work is needed in order to define those circumstances which elevate the maintenance requirements of grazing animals.


2019 ◽  
Vol 486 (3) ◽  
pp. 3697-3701 ◽  
Author(s):  
I D Karachentsev ◽  
V E Karachentseva

ABSTRACT We use a sample of 220 face-on bulge-less galaxies situated in the low-density environment to estimate their total mass via orbital motions of supposed rare satellites. Our inspection reveals 43 dwarf companions having the mean projected separation of 130 kpc and the mean-square velocity difference of 96 km s−1. For them, we obtain the mean orbital-mass-to-K-band luminosity ratio of 20 ± 3. Seven bulge-less spirals in the Local Volume are also characterized by the low mean ratio, Morb/LK = 22 ± 5. We conclude that bulge-less Sc–Scd–Sd galaxies have poor dark haloes, about two times lower than that of bulgy spiral galaxies of the same stellar mass.


Sign in / Sign up

Export Citation Format

Share Document