scholarly journals An Automatic Conflict Detection Framework for Urban Intersections Based on an Improved Time Difference to Collision Indicator

2021 ◽  
Vol 13 (24) ◽  
pp. 4994
Author(s):  
Qing Li ◽  
Zhanzhan Lei ◽  
Jiasong Zhu ◽  
Jiaxin Chen ◽  
Tianzhu Ma

Urban road intersections are one of the key components of road networks. Due to complex and diverse traffic conditions, traffic conflicts occur frequently. Accurate traffic conflict detection allows improvement of the traffic conditions and decreases the probability of traffic accidents. Many time-based conflict indicators have been widely studied, but the sizes of the vehicles are ignored. This is a very important factor for conflict detection at urban intersections. Therefore, in this paper we propose a novel time difference conflict indicator by incorporating vehicle sizes instead of viewing vehicles as particles. Specially, we designed an automatic conflict recognition framework between vehicles at the urban intersections. The vehicle sizes are automatically extracted with the sparse recurrent convolutional neural network, and the vehicle trajectories are obtained with a fast-tracking algorithm based on the intersection-to-union ratio. Given tracking vehicles, we improved the time difference to the conflict metric by incorporating vehicle size information. We have conducted extensive experiments and demonstrated that the proposed framework can effectively recognize vehicle conflict accurately.

2018 ◽  
Vol 231 ◽  
pp. 01006
Author(s):  
Salvatore Cafiso ◽  
Carmelo D'Agostino ◽  
Radosław Bąk ◽  
Mariusz Kieć

The additional passing lanes and 2+1 roads improve significant road safety. Studies indicate sections with additional passing lanes (relief or alternately), which may cause reduction in the number of accidents by 50%. However, how geometric design affects the safety performance of such sections is not in depth investigated. Previous studies are carried out with two approaches, i.e. the most often, based on analysis of observed crashes and more rarely by using microsimulation study. In the case of microsimulation research, traffic conflict theory can be applied as a surrogate measure of safety. One of the main problem in simulated conflicts study is the validation of simulation results against real world conditions. The aim of the paper is to assess the reliability of traffic conflict measures obtained by microsimulation against real world observation. Conflicts were detected and classified from video recording and analysis of vehicle trajectories in the merging area on 2+1 roads in Poland. Conducted studies focus only on lane changing conflicts, locations and TTCs values of observed conflicts between vehicles were primarily identified. Observed conflicts are than compared with microsimulated one, to assess if there is a correlation in the two.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 926
Author(s):  
Huimin Ge ◽  
Mingyue Huang ◽  
Ying Lu ◽  
Yousen Yang

Due to the randomness and weak symmetry of traffic accidents occurring in the expressway maintenance operation area, it is difficult to use the number of traffic accidents to evaluate the safety of maintenance operation areas. In this paper, the traffic characteristics and traffic conflicts of the maintenance operation area with the lane closed on the outside of the two-way four-lane expressway are studied. By using the statistical method, the distribution of vehicle speed and time headway in different areas of the maintenance operation area are analyzed, and the queuing characteristics of vehicles in the upstream transition zone of the expressway are determined. Based on improved time to collision (TTC) model, the traffic conflict severity of expressway maintenance operation area is divided. The negative binomial distribution is used to establish a traffic conflict prediction model for the enclosed maintenance area of the outer lane of the expressway, and the validity of the traffic conflict prediction model is verified based on the average absolute error percentage (MAPE). The research results show that: when the 0 < TTC < 1.3 s, the traffic conflict is serious conflict; when 1.3 s < TTC, the traffic conflict is non-serious conflict. Furthermore, the traffic conflict prediction model has high accuracy, the MAPE of the warning area and the upstream transition area are 10.8% and 5.0%, respectively.


Author(s):  
Dominique Lord

The interaction between pedestrians and left-turning vehicles at signalized intersections are examined using the traffic conflict technique. Paramount was a comparison of the safety of left turns at two types intersections: T-intersections and X-intersections (cross-intersections). Previous research has indicated that T-intersections are more dangerous to pedestrians. In preparation for the comparison several traffic conflict definitions and their applications to pedestrians were evaluated. Use of a laptop computer for data collection was tested. Eight sites taken from intersections in Hamilton, Ontario, Canada, were selected. A conflict recording methodology was developed for T-intersections and X-intersections that consisted of recording data at various times along the paths of pedestrians and left-turning vehicles, and recording traffic conflicts. Two computer programs were written for the data collection process: one for vehicles and one for pedestrians. Several statistical tests to relate traffic conflicts and the expected number of accidents were performed. These tests indicate that a positive correlation between traffic conflicts and expected number of accidents exists; they also suggest that T-intersections have a higher traffic conflict rate than X-intersections.


2010 ◽  
Vol 2 (3) ◽  
pp. 60-66
Author(s):  
Nemunas Abukauskas ◽  
Egidijus Skrodenis

The results of lengthy thorough investigations into traffic safety situation show that the percentage of pedestrians getting involved in road traffic accidents on Lithuanian roads is significantly higher (more than 33 % of the total number of injury and fatal accidents) than that compared to the other European Union member-states. The article studies traffic safety problems and their factors causing the largest influence on the occurrence of these accidents. Considering valuable experience gained by foreign countries, investigation was carried out to establish general and main factors causing insufficient road safety conditions and significance of these factors to road safety. The article also shows the main activity improving road safety in Lithuania and discusses the effectiveness of strategic and local (temporary and long term) measures to improve conditions for pedestrian road safety.


Author(s):  
Jinling Li ◽  
Yuhao Liu ◽  
Ahmed Tageldin ◽  
Mohamed H. Zaki ◽  
Greg Mori ◽  
...  

An approach for vehicle conflict analysis based on three-dimensional (3-D) vehicle detection is presented. Techniques for quantitative conflict measurements often use a point trajectory representation for vehicles. More accurate conflict measurement can be facilitated with a region-based vehicle representation instead. This paper describes a computer vision approach for extracting vehicle trajectories from video sequences. The method relied on a fusion of background subtraction and feature-based tracking to provide a three-dimensional (3-D) cuboid representation of the vehicle. Standard conflict measures, including time to collision and postencroachment time, were computed with the use of the 3-D cuboid vehicle representations. The use of these conflict measures was demonstrated on a challenging data set of video footage. Results showed that the region-based representation could provide more precise calculation of traffic conflict indicators compared with approaches based on a point representation.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Bing Li ◽  
Wei Cheng ◽  
Yiming Bie ◽  
Bin Sun

Right-turn motorized vehicles turn right using channelized islands, which are used to improve the capacity of intersections. For ease of description, these kinds of right-turn motorized vehicles are called advance right-turn motorized vehicles (ARTMVs) in this paper. The authors analyzed four aspects of traffic conflict involving ARTMVs with other forms of traffic flow. A capacity model of ARTMVs is presented here using shockwave theory and gap acceptance theory. The proposed capacity model was validated by comparison to the results of the observations based on data collected at a single intersection with channelized islands in Kunming, the Highway Capacity Manual (HCM) model and the VISSIM simulation model. To facilitate engineering applications, the relationship describing the capacity of the ARTMVs with reference to the distance between the conflict zone and the stop line and the relationship describing the capacity of the ARTMVs with reference to the effective red time of the nonmotorized vehicles moving in the same direction were analyzed. The authors compared these results to the capacity of no advance right-turn motorized vehicles (NARTMVs). The results show that the capacity of the ARTMVs is more sensitive to the changes in the arrival rate of nonmotorized vehicles when the arrival rate of the nonmotorized vehicles is 500  (veh/h)~2000  (veh/h) than when the arrival rate is some other value. In addition, the capacity of NARTMVs is greater than the capacity of ARTMVs when the nonmotorized vehicles have a higher arrival rate.


Author(s):  
Johannes Gruber ◽  
Santhanakrishnan Narayanan

Cargo cycles are gaining more interest among commercial users from different business sectors, and they compete with cars in urban commercial transport. Though many studies show the potential of cargo cycles, there is still a reluctance to deploy them. One possible reason for this is the lack of knowledge regarding their suitability in relation to travel time. Therefore, this study aims to explore cargo cycles’ travel time performance by quantifying the travel time differences between them and conventional vehicles for commercial trips. The authors compare real-life trip data from cargo cycles with Google’s routed data for cars. By doing this, the authors explore the factors affecting the travel time difference and propose a model to estimate this difference. The attributes for the model were selected keeping in mind the ease of obtaining values for the variables. Results indicate cycling trip distance to be the most significant variable. The study shows that expected travel time difference for trips with distances between 0 and 20 km (12.4 mi) ranges from -5 min (cargo cycle 5 min faster) to 40 min with a median of 6 min. This value can decrease if users take the optimal cycling route and the traffic conditions are worse for cars. Although what is an acceptable amount of travel time difference depends on the user, practitioners can be certain of the travel time difference they can expect, which enables them to assess the suitability of cargo cycles for their commercial operations.


2014 ◽  
Vol 505-506 ◽  
pp. 1127-1132 ◽  
Author(s):  
Cheng Xu ◽  
Zhao Wei Qu

Traffic safety is of great significance, especially at urban expressway where traffic volume is large and traffic conflicts are highlighted. But little research up to date has discussed in detail how these factors impact the TTC characteristics. In this paper, field Beijing expressway data were collected by video with different locations, lanes, traffic conditions and following vehicle types. Accordingly, some basic descriptive statistics of total TTC samples were shown and analyzed. We then used T-test to analyze the effect of road environments, traffic conditions, and vehicle types on TTC statistically. The results implied three main findings. Firstly, TTC was found to change according to road environments (i.e. TTC on weaving segment is smaller than other locations), secondly, some evidence supported this hypothesis that traffic conditions (especially uncongested traffic condition) affect TTC significantly, and lastly, little correlation was found between TTC means and vehicle types.


Author(s):  
Lai Zheng ◽  
Tarek Sayed

Because of well-recognized quality and quantity problems associated with historical crash data, traffic conflict techniques have been increasingly used in before-after safety analysis in recent years. This study proposes using an extreme value theory (EVT) approach to conduct traffic conflict-based before-after analysis. The capability of providing confident estimation of extreme events by the EVT approach drives the before-after analysis to shift from normal traffic conflicts to more serious conflicts, which are relatively rare but have more in common with actual crashes. The approach is applied to evaluate the safety effects of converting channelized right-turn lanes into smart channels, based on traffic conflicts defined by time to collision (TTC) and collected from three treatment intersections and one control intersection in the city of Penticton, British Columbia. Odds ratios and treatment effects are calculated from extreme-serious conflicts, the frequencies of which are estimated from the generalized Pareto distributions of traffic conflicts with TTC⩽0.5 s. The results show approximately 34% reduction in total extreme-serious conflicts (i.e., combining merging conflicts and rear-end conflicts), indicating overall a remarkable safety improvement following the smart channel treatment. This finding is consistent with the analysis result based on traffic conflicts with TTC⩽3.0 s. It is also found that the reduction in extreme-serious merging conflicts is small and insignificant. This is caused by the phenomenon that TTC values of merging conflicts become smaller after the treatment, and it is possibly because drivers become more aggressive with the better view of approaching cross-street traffic provided by the smart channel.


Sign in / Sign up

Export Citation Format

Share Document