Equilibrium & kinetic studies of reactive extraction of trans-aconitic acid using sunflower oil with tri-n-octylamine

Author(s):  
Rajesh Nimmakayala ◽  
Dharm Pal ◽  
Dhananjay Singh ◽  
Abhinesh Kumar Prajapati

Abstract In order to design an efficient extraction system for the separation of biochemically produced trans-aconitic acid (TAH) from fermentation broth; equilibrium and kinetics of reactive extraction of TAH from aqueous solutions was investigated using tri-n-octylamine (TOA) as an extractant and sunflower oil as a diluent. Through the equilibrium studies stoichiometry (acid, extractant) of complex formations was determined with the help of loading ratio. Formation of (1, 1), (2, 1), & (3, 1) stoichiometry complexes were observed having complexation constants values 179.73 kmol−1 m3, 9512.58 kmol−2 m6, and 614,407.02 kmol−3 m9, respectively. Kinetics experiments were performed in Lewis type stirred cell and results confirmed that reaction between TAH and TOA in sunflower oil fall in regime 1, i.e. slow reaction occurring in bulk organic phase. The overall order of reaction is pseudo first order with rate constant (K mn ) 1.78 × 10−5 (kmol m−3)−0.71 s−1 and physical mass transfer coefficient (K l ) 4.22 × 10−5 m s−1.

2010 ◽  
Vol 171-172 ◽  
pp. 15-18
Author(s):  
Zeng Quan Ji ◽  
Tian Hai Wang ◽  
Kai Hong Luo ◽  
Yao Qing Wang

An extracellular biopolymer (PFC02) produced by Pseudomonas alcaligenes was used as an alternative biosorbent to remove toxic Cd(II) metallic ions from aqueous solutions. The effect of experimental parameters such as pH, Cd(II) initial concentration and contact time on the adsorption was studied. It was found that pH played a major role in the adsorption process, the optimum pH for the removal of Cd(II) was 6.0. The FTIR spectra showed carboxyl, hydroxyl and amino groups of the PFC02 were involved in chemical interaction with the Cd(II) ions. Equilibrium studies showed that Cd(II) adsorption data followed Langmuir model. The maximum adsorption capacity (qmax) for Cd(II) ions was estimated to be 93.55 mg/g. The kinetic studies showed that the kinetic rates were best fitted to the pseudo-second-order model. The study suggestted that the novel extracellular biopolymer biosorbent have potential applications for removing Cd(II) from wastewater.


2020 ◽  
Vol 8 (5) ◽  
pp. 5252-5256

Reactive extraction is a sophisticated separation technique used for the recovery of carboxylic acids from fermentation broth. Levulinic acid is a versatile chemical. A right combination of extractant and diluent will provide a high yield. The reactive extraction of levulinic acid from aqueous solution with tri-n-octylamine (TOA) dissolved in 1-octanol was investigated at room temperature. The effect of pH was studied. From the physical and chemical equilibrium experimental results, the distribution coefficient (KD), extraction efficiency (E%), loading ratio (Z), stoichiometric loading factor (ZS) and modified separation factor (Sf ) are calculated. It was found that physical extraction provided less yield compared to chemical extraction. A maximum KD was obtained as 5.248 using 40% TOA (0.9059 mol/L) while 83.99 % of the levulinic acid was extracted. By increasing the initial concentration of levulinic acid increased the concentration of levulinic acid in both the organic phase and aqueous phase. As the concentration of TOA increases from 10 to 40 % (0.2264 mol/L to 0.9059 mol/L), the distribution coefficient and extraction efficiency also increase. By increasing the pH from 3 to 7, the distribution coefficient and extraction efficiency were drastically affected.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Sunder Lal Pal ◽  
Shourabh Singh Raghuwanshi ◽  
Kanti Kumar Athankar ◽  
Ashwani Kumar Rathore

The present study is aimed at using one of the most promising methods called reactive extraction to extract succinic acid from aqueous solution by using N,N-dioctyloctan-1-amine in biodiesel as diluent made from sunflower oil, rice bran oil, sesame oil, and karanji oil. The results of extraction studies with the diluents (physical) showed their inability to recover any acid by themselves. In reactive extraction, the organic phase extracting power solely depends on tri-n-octylamine. The ranges of the distribution coefficient are found as 7.62–18.12 for sunflower oil biodiesel, 8.33–17.45 for rice bran oil biodiesel, 7.0–17.67 for sesame oil biodiesel, and 9.85–21.36 for karanji oil biodiesel. The ranges of the loading ratio are 0.1–3.0 for sunflower oil biodiesel, 0.1–2.9 for rice bran oil biodiesel, 0.2–2.9 for sesame oil biodiesel, and 0.1–2.9 for karanji oil biodiesel. The karanji and sunflower oil showed higher values of distribution coefficient (KD) over rice bran oil and sesame oil which might be due to presence of both C20 and special fatty acids. The results show that biogenous diluents along with N,N-dioctyloctan-1-amine as extractant form a nontoxic and viable option for the extraction of succinic acid in the binary phase system.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Antonio Jesús Muñoz ◽  
Francisco Espínola ◽  
Manuel Moya ◽  
Encarnación Ruiz

Lead biosorption byKlebsiellasp. 3S1 isolated from a wastewater treatment plant was investigated through a Rotatable Central Composite Experimental Design. The optimisation study indicated the following optimal values of operating variables: 0.4 g/L of biosorbent dosage, pH 5, and 34°C. According to the results of the kinetic studies, the biosorption process can be described by a two-step process, one rapid, almost instantaneous, and one slower, both contributing significantly to the overall biosorption; the model that best fits the experimental results was pseudo-second order. The equilibrium studies showed a maximum lead uptake value of 140.19 mg/g according to the Langmuir model. The mechanism study revealed that lead ions were bioaccumulated into the cytoplasm and adsorbed on the cell surface. The bacterium  Klebsiellasp. 3S1 has a good potential in the bioremoval of lead in an inexpensive and effective process.


1973 ◽  
Vol 51 (10) ◽  
pp. 1355-1364 ◽  
Author(s):  
K. A. Kelly ◽  
A. H. Sehon ◽  
A. Froese

Kinetic and equilibrium studies were performed on the reactions of the hapten ε-dinitrophenyl-lysine with specific intact antibodies, reduced, alkylated, and polyalanylated antibodies, and reduced, alkylated, and polyalanylated γ-chains. No reaction was detected between the hapten and light chains. The γ-chains were found to have 0.5 combining sites per chain, and thin layer gel chromatography revealed that they existed as monomers. The rate constant of association for the reaction of γ-chains with hapten was found to be almost 1000 times lower than that for the corresponding reaction with the parent antibody. Differences in the rate constants of dissociation were much less pronounced. These results suggested that the combining site in the separated γ-chain had undergone a change in conformation.


Sign in / Sign up

Export Citation Format

Share Document