prototype foamy virus
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1910
Author(s):  
Anthony J. Rabe ◽  
Yow Yong Tan ◽  
Ross C. Larue ◽  
Kristine E. Yoder

Integrases of different retroviruses assemble as functional complexes with varying multimers of the protein. Retroviral integrases require a divalent metal cation to perform one-step transesterification catalysis. Tetrameric prototype foamy virus (PFV) intasomes assembled from purified integrase and viral DNA oligonucleotides were characterized for their activity in the presence of different cations. While most retroviral integrases are inactive in calcium, PFV intasomes appear to be uniquely capable of catalysis in calcium. The PFV intasomes also contrast with other retroviral integrases by displaying an inverse correlation of activity with increasing manganese beginning at relatively low concentrations. The intasomes were found to be significantly more active in the presence of chloride co-ions compared to acetate. While HIV-1 integrase appears to commit to a target DNA within 20 s, PFV intasomes do not commit to target DNA during their reaction lifetime. Together, these data highlight the unique biochemical activities of PFV integrase compared to other retroviral integrases.


Retrovirology ◽  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Peipei Yuan ◽  
Jun Yan ◽  
Shuang Wang ◽  
Yang Guo ◽  
Xueyan Xi ◽  
...  

Abstract Background Prototype foamy virus (PFV) is nonpathogenic complex retroviruses that express a transcriptional transactivator Tas, which is essential for the activity of viral long terminal repeat (LTR) promoter and internal promoter (IP). Tripartite motif-containing protein 28 (Trim28) is well known as a scaffold protein normally enriched in gene promoter region to repress transcription. We sought to determine if whether Trim28 could be enriched in PFV promoter region to participate the establishment of PFV latency infection. Results In this study, we show that Trim28 restricts Tas-dependent transactivation activity of PFV promoter and negatively regulates PFV replication. Trim28 was found to be enriched in LTR instead of IP promoter regions of PFV genome and contribute to the maintenance of histone H3K9me3 marks on the LTR promoter. Furthermore, Trim28 interacts with Tas and colocalizes with Tas in the nucleus. Besides, we found that Trim28, an E3 ubiquitin ligase, binds directly to and promotes Tas for ubiquitination and degradation. And the RBCC domain of Trim28 is required for the ubiquitination and degradation of Tas. Conclusions Collectively, our findings not only identify a host factor Trim28 negatively inhibits PFV replication by acting as transcriptional restriction factor enriched in viral LTR promoter through modulating H3K9me3 mark here, but also reveal that Trim28 mediated ubiquitin proteasome degradation of Tas as a mechanism underlying Trim28 restricts Tas-dependent transcription activity of PFV promoter and PFV replication. These findings provide new insights into the process of PFV latency establishment. Graphical Abstract


2021 ◽  
Author(s):  
Anthony J Rabe ◽  
Yow Yong Tan ◽  
Ross C Larue ◽  
Kristine E Yoder

Integrase enzymes of different retroviruses assemble as functional complexes with varying multimers of the protein. Retroviral integrases require a divalent metal cation to perform one-step transesterification catalysis. Tetrameric prototype foamy virus (PFV) intasomes assembled from purified integrase and viral DNA oligonucleotides were characterized for their activity in the presence of different cations. While most retroviral integrases are inactive in calcium, PFV intasomes appear to be uniquely capable of catalysis in calcium. The PFV intasomes also contrast other retroviral integrases by displaying an inverse correlation of activity with increasing manganese beginning at relatively low concentrations. The intasomes were found to be significantly more active in the presence of chloride co-ions compared to acetate. While HIV-1 integrase appears to commit to a target DNA within 20 seconds, PFV intasomes do not commit to target DNA during their reaction lifetime. Together these data highlight the unique biochemical activities of PFV integrase compared to other retroviral integrases.


Intervirology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Jie Wei ◽  
Yan Sun ◽  
Ting-ting Wang ◽  
Gui Zhu ◽  
Wan-hong Liu ◽  
...  

<b><i>Background:</i></b> For foamy virus, the transactivator of spumaretrovirus (Tas) could bind directly to target DNA sequences termed as Tas responsive elements and trigger the viral internal promoter (IP) and long terminal repeat (LTR) promoters. The cellular endogenous factors also play an important role in viral gene expressions. We hypothesized that except the viral transcription factor Tas, the cellular endogenous factors also affect the viral gene expression. <b><i>Methods:</i></b> The full length of the prototype foamy virus (PFV) genome (U21247) was used to predict the potential binding sites of the transcription factors by online software JASPAR (http://jaspar.genereg.net) and Softberry (http://linux1.softberry.com/berry.phtml?topic=index&amp;group=programs&amp;subgroup=promoter). The Dual-Luciferase<sup>®</sup> Reporter Assay System (Promega, USA) was used to confirm the relative luciferase activities of the test groups. The different representative activating agents or inhibitors of each canonical signal pathway were used to identify the impact of these pathways on PFV 5′LTR and IP promoters. <b><i>Results:</i></b> The results showed different cellular endogenous factors might have respective effects on PFV 5′LTR and IP. It is worth mentioning that activator protein-1 and BCL2-associated athanogene 3, 2 kinds of vital proteins associated with NF-κB and PKC pathways, could activate the basal activity of 5′LTR and IP promoters but inhibit the Tas-regulated activity of both promoters. Furthermore, PFV Tas was identified to trigger the transcription of the NF-κB promoter. <b><i>Conclusion:</i></b> NF-κB had a negative effect on PFV 5′LTR and IP promoter activities, the PKC pathway might upregulate 5′LTR and IP promoter activities, and the JNK and NF-AT signal pathway could increase the Tas-regulated promoter activity of PFV 5′LTR. This study sheds light on the interaction between PFV and the host cell and may help utilize the viral promoters in retroviral vectors designed for gene transfer experiments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Yan ◽  
Yingcheng Zheng ◽  
Peipei Yuan ◽  
Shanshan Wang ◽  
Song Han ◽  
...  

Prototype foamy virus (PFV) is a member of the oldest family of retroviruses and maintains lifelong latent infection in the host. The lifelong latent infection of PFV may be maintained by the restriction factors of viral replication in the host. However, the mechanisms involved in PFV latent infection are poorly understood. Here, we found that TBC1D16, a TBC domain-containing protein, is significantly down-regulated after PFV infection. Tre2/Bub2/Cdc16 (TBC) domain-containing proteins function as Rab GTPase-activating proteins (GAPs) and are participates in the progression of some diseases and many signaling pathways. However, whether TBC proteins are involved in PFV replication has not been determined. Here, we found that TBC1D16 is a novel antiviral protein that targets Rab5C to suppress PFV replication. Overexpression TBC1D16 inhibited the transcription and expression of Tas and Gag, and silencing TBC1D16 enhanced the PFV replication. Moreover, the highly conserved amino acid residues R494 and Q531 in the TBC domain of TBC1D16 were essential for inhibiting PFV replication. We also found that TBC1D16 promoted the production of PFV-induced IFN-β and the transcription of downstream genes. These results suggest that TBC1D16 might be the first identified TBC proteins that inhibited PFV replication and the mechanism by which TBC1D16 inhibited PFV replication could provide new insights for PFV latency.


2021 ◽  
Vol 296 ◽  
pp. 100550
Author(s):  
Randi M. Kotlar ◽  
Nathan D. Jones ◽  
Gayan Senavirathne ◽  
Anne M. Gardner ◽  
Ryan K. Messer ◽  
...  

FEBS Open Bio ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2137-2148
Author(s):  
Junshi Zhang ◽  
Chenchen Wang ◽  
Xiaopeng Tuo ◽  
Keli Chai ◽  
Yali Xu ◽  
...  

2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Yingcheng Zheng ◽  
Guoguo Zhu ◽  
Jun Yan ◽  
Yinglian Tang ◽  
Song Han ◽  
...  

ABSTRACT Prototype foamy virus (PFV), a complex retrovirus belonging to Spumaretrovirinae, maintains lifelong latent infection. The maintenance of lifelong latent infection by viruses relies on the repression of the type I interferon (IFN) response. However, the mechanism involving PFV latency, especially regarding the suppression of the IFN response, is poorly understood. Our previous study showed that PFV promotes autophagic flux. However, the underlying mechanism and the role of PFV-induced autophagy in latent infection have not been clarified. Here, we report that the PFV viral structural protein Gag induced amphisome formation and triggered autophagic clearance of stress granules (SGs) to attenuate type I IFN production. Moreover, the late domain (L-domain) of Gag played a central role in Alix recruitment, which promoted endosomal sorting complex required for transport I (ESCRT-I) formation and amphisome accumulation by facilitating late endosome formation. Our data suggest that PFV Gag represses the host IFN response through autophagic clearance of SGs by activating the endosome-autophagy pathway. More importantly, we found a novel mechanism by which a retrovirus inhibits the SG response to repress the type I IFN response. IMPORTANCE Maintenance of lifelong latent infection for viruses relies on repression of the type I IFN response. Autophagy plays a double-edged sword in antiviral immunity. However, the role of autophagy in the regulation of the type I IFN response and the mechanism involving virus-promoted autophagy have not been fully elucidated. SGs are an immune complex associated with the antiviral immune response and are critical for type I IFN production. Autophagic clearance of SGs is one means of degradation of SGs and is associated with regulation of immunity, but the detailed mechanism remains unclear. In this article, we demonstrate that PFV Gag recruits ESCRT-I to facilitate amphisome formation. Our data also suggest that amphisome formation is a critical event for autophagic clearance of SGs and repression of the type I IFN response. More importantly, we found a novel mechanism by which a retrovirus inhibits the SG response to repress the type I IFN response.


2019 ◽  
Vol 35 (1) ◽  
pp. 73-82
Author(s):  
Shanshan Xu ◽  
Liujun Chen ◽  
Yinglian Tang ◽  
Peipei Yuan ◽  
Jun Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document