Operation and Startup of Three-Phase Grid-Connected PWM Inverter for an Experimental Test Bench With DSPACE Real-Time Implementation of PQ Control

2022 ◽  
pp. 207-232
Author(s):  
Kamal Elyaalaoui ◽  
Moussa Labbadi ◽  
Khalid Chigane ◽  
Mohammed Ouassaid ◽  
Mohamed Cherkaoui

The main objective of this chapter is the experimental validation of active and reactive power control at the connection point for a three-phase grid connected inverter. It gives an overview on the adopted vector control strategy, regulation of the angle of orientation of the blades (pitch control), synchronization grid side converter to the power network using phase closed loop (PLL). Once the experimental test bench is described, the authors devote a first part to the design of the block circuit diagram of the experimental platform and the control strategy implemented in the DSPace DS1104, and they suggest some steps to associate the inverter to the electrical network. Subsequently, they discuss the experimental results validating the proposed power control. The purpose of this experimental results is the DSPACE real-time implementation of PQ control using three-phase inverter and development of a startup algorithm of the experimental test bench.

Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 880
Author(s):  
Martynas Šapurov ◽  
Vytautas Bleizgys ◽  
Algirdas Baskys ◽  
Aldas Dervinis ◽  
Edvardas Bielskis ◽  
...  

The thyristor-controlled reactor (TCR) compensator for smooth asymmetric compensation of reactive power in a low-voltage utility grid is proposed in this work. Two different topologies of compensator were investigated: topology based on a single-cored three-phase reactor and topology with separate reactors for every phase. The investigation of the proposed TCR compensator was performed experimentally using a developed experimental test bench for 12 kVAr total reactive power. The obtained results show that employment of separate reactors for every phase allows us to control the reactive power in every phase independently, and that the TCR compensator with three single-phase reactors is suitable for smooth and asymmetric compensation of reactive power in a low-voltage utility grid.


Author(s):  
David Chalet ◽  
Jose´ Galindo ◽  
He´ctor Climent

The aim of this paper consists of establishing a methodology for oxidation catalyst modeling based on experimental tests and the development of a theoretical model with zero and one dimensional elements. Related to the theoretical work, the main aspects of such modeling are presented. It consists of describing the inner catalyst geometry by a combination of volumes and simple pipes network. The gas properties in volumes are calculated with a filling and emptying approach whereas the unsteady flow in pipes elements is considered to be one-dimensional and solved by using a finite difference scheme. Concerning the experimental tests, a study is carried out on a shock tube bench. The advantage of this experimental test bench is to study the propagation of a shock wave in the catalyst under controlled and convenient conditions, i.e. cold and non steady flow. Later, the model is set up by comparing the upstream and downstream pressure signals with the simulation results. Since the model lacks of relevant information of pressure losses at the inlet and outlet of the channels, which are rather difficult to compute due to the complex phenomena and flow maldistributions if the use of a 3D CFD code is avoided, the calibration of the model to match the experimental data is the decided approach. In this context, the shock wave test bench is used in order to excite the catalyst with non-steady flow conditions rather than to reproduce the conditions that will appear in real engine operation. The comparison shows good agreement between one-dimensional and experimental results. In order to validate this new modeling on a real engine configuration, an experimental validation is carried out in a four-stroke turbocharged Diesel engine. This experimental test bench allows to measure the main engine characteristics and performance as well as the instantaneous pressure upstream and downstream the catalyst. A simulation code has been also set up to model the engine and the comparison in terms of exhaust pressure pulses propagation inside the catalyst shows good agreement between the one-dimensional model and the experimental results.


2013 ◽  
Vol 732-733 ◽  
pp. 1251-1254
Author(s):  
Zhi Lei Yao ◽  
Lan Xiao ◽  
Jing Xu

As the dynamic response of the traditional direct power control using space vector modulation (DPC-SVM) is slow, an improved DPC-SVM for the three-phase grid-connected inverter is proposed. The feed-forward reference powers are used to improve the dynamic response. The operating principles of the traditional and improved DPC-SVMs are illustrated. Experimental results of a 15-kVA three-phase grid-connected inverter with the traditional and improved control methods verify the theoretical analysis.


2011 ◽  
Vol 48-49 ◽  
pp. 863-867
Author(s):  
Fang Ping Zhao ◽  
Yong Yang ◽  
Yi Yuan

The paper proposes a quasi resonant direct power control algorithm for three-phase grid-connected inverters without grid voltage sensors in distributed generation systems. According to the active and reactive power references, grid virtual flux and the inverter output current references are calculated. In order to accurately and fast track the output current references, the quasi proportional resonant (QPR) controller is used. The theoretical principle of this method is discussed. The steady-state and dynamic experimental results of quasi resonant direct power control that can illustrate the operation and performance of the presented control strategy are displayed. It is shown that the control system exhibits several advantages, such as constant switching frequency, sinusoidal grid currents and good dynamic response. Experimental results are provided to demonstrate the effectiveness of the proposed control strategy.


Author(s):  
Jesus E. Valdez-Resendiz ◽  
Jonathan C. Mayo-Maldonado ◽  
Julio C. Rosas-Caro ◽  
Avelina Alejo-Reyes ◽  
Armando Llamas-Terres ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1327 ◽  
Author(s):  
Thiago Soares ◽  
Ubiratan Bezerra ◽  
Maria Tostes

This paper proposes the development of a three-phase state estimation algorithm, which ensures complete observability for the electric network and a low investment cost for application in typical electric power distribution systems, which usually exhibit low levels of supervision facilities and measurement redundancy. Using the customers´ energy bills to calculate average demands, a three-phase load flow algorithm is run to generate pseudo-measurements of voltage magnitudes, active and reactive power injections, as well as current injections which are used to ensure the electrical network is full-observable, even with measurements available at only one point, the substation-feeder coupling point. The estimation process begins with a load flow solution for the customers´ average demand and uses an adjustment mechanism to track the real-time operating state to calculate the pseudo-measurements successively. Besides estimating the real-time operation state the proposed methodology also generates nontechnical losses estimation for each operation state. The effectiveness of the state estimation procedure is demonstrated by simulation results obtained for the IEEE 13-bus test network and for a real urban feeder.


2013 ◽  
Vol 732-733 ◽  
pp. 1261-1264
Author(s):  
Zhi Lei Yao ◽  
Lan Xiao ◽  
Jing Xu

An improved control strategy for three-phase grid-connected inverters with space vector pulse width modulation (SVPWM) is proposed. When the grid current contains harmonics, the d-and q-axes grid currents is interacted in the traditional control method, and the waveform quality of the grid current is poor. As the reference output voltage cannot directly reflect the change of the reference grid current with the traditional control strategy, the dynamic response of the grid-connected inverter is slow. In order to solve the aforementioned problems, the d-and q-axes grid currents in the decoupled components of the grid current controller are substituted by the d-and q-axes reference grid currents, respectively. The operating principles of the traditional and proposed control methods are illustrated. Experimental results show that the grid-connected inverter with the improved control strategy has high waveform quality of the grid current and fast dynamic response.


Sign in / Sign up

Export Citation Format

Share Document