scholarly journals Digitalization of Clubroot Disease Index, a Long Overdue Task

Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 241
Author(s):  
Rasha Salih ◽  
Edel Pérez-López

Clubroot is a devastating disease caused by the protist Plasmodiophora brassicae Woronin. After root hair colonization, the clubroot pathogen induces clubs that block water uptake, leading to dehydration and death. The study of the severity of plant diseases is very important. It allows us to characterize the level of resistance of plant germplasm and to classify the virulence of pathogen strains or isolates. Lately, the use of learning machines and automatization has expanded to plant pathology. Fast, reliable and unbiased methods are always necessary, and with clubroot disease indexing this is not different. From this perspective, we discuss why this is the case and how we could achieve this long overdue task for clubroot disease.

2012 ◽  
Vol 48 (No. 4) ◽  
pp. 156-161 ◽  
Author(s):  
P. Kopecký ◽  
I. Doležalová ◽  
M. Duchoslav ◽  
K. Dušek

Fifty genotypes of cauliflovwer (Brassica oleracea var. botrytis) were evaluated for resistance to clubroot disease (Plasmodiophora brassicae Wor.) under controlled conditions in a plant growth chamber. The cultivars with the highest resistance were Brilant, Agora, and Bora, while the most susceptible were the cultivars White Top, White Fox, and Octavian. The variation in disease index is probably due to different pathogenicity rates of clubroot pathotypes and genetic heterogeneity of European cauliflower cultivars. The obtained results will be tested in an infested and non-infested field.  


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 792
Author(s):  
Haohui Yang ◽  
Yuxiang Yuan ◽  
Xiaochun Wei ◽  
Xiaohui Zhang ◽  
Haiping Wang ◽  
...  

Raphanus sativus, an important cruciferous vegetable, has been increasingly affected by clubroot disease. Establishing a stable and accurate resistance identification method for screening resistant germplasms is urgently needed in radish. In this study, the influence of inoculum concentration, inoculation methods, and pH of the substrate on disease occurrence was studied. The result showed that the disease index (DI) was highest at 2 × 108 spores/mL, the efficiency of two-stage combined inoculation methods was higher than others, and pH 6.5 was favorable for the infection of P. brassicae. By using this new method, DIs of 349 radish germplasms varying from 0.00 to 97.04, presented significantly different levels of resistance. Analysis showed that 85.06% germplasms from China were susceptible to P. brassicae, whilst 28 accessions were resistant and mainly distributed in east, southwest, northwest, and south-central China. Most of the exotic germplasms were resistant. Repeated experiments verified the stability and reliability of the method and the identity of germplasm resistance. In total, 13 immune, 5 highly resistant and 21 resistant radish accessions were identified. This study provides an original clubroot-tolerance evaluation technology and valuable materials for the development of broad-spectrum resistant varieties for sustainable clubroot management in radish and other cruciferous crops.


2012 ◽  
Vol 102 (7) ◽  
pp. 652-655 ◽  
Author(s):  
K. L. Everts ◽  
L. Osborne ◽  
A. J. Gevens ◽  
S. J. Vasquez ◽  
B. K. Gugino ◽  
...  

Extension plant pathologists deliver science-based information that protects the economic value of agricultural and horticultural crops in the United States by educating growers and the general public about plant diseases. Extension plant pathologists diagnose plant diseases and disorders, provide advice, and conduct applied research on local and regional plant disease problems. During the last century, extension plant pathology programs have adjusted to demographic shifts in the U.S. population and to changes in program funding. Extension programs are now more collaborative and more specialized in response to a highly educated clientele. Changes in federal and state budgets and policies have also reduced funding and shifted the source of funding of extension plant pathologists from formula funds towards specialized competitive grants. These competitive grants often favor national over local and regional plant disease issues and typically require a long lead time to secure funding. These changes coupled with a reduction in personnel pose a threat to extension plant pathology programs. Increasing demand for high-quality, unbiased information and the continued reduction in local, state, and federal funds is unsustainable and, if not abated, will lead to a delay in response to emerging diseases, reduce crop yields, increase economic losses, and place U.S. agriculture at a global competitive disadvantage. In this letter, we outline four recommendations to strengthen the role and resources of extension plant pathologists as they guide our nation's food, feed, fuel, fiber, and ornamental producers into an era of increasing technological complexity and global competitiveness.


Resting spore germination and the root hair stages of the life history of Plasmodiophora brassicae were studied in stained preparations of infected Brassica rapa seedling roots. Naked protoplasts, usually possessing two unequal flagella, were released from resting spores through a small circular pore. They penetrated the root hairs of B. rapa and there developed into plasmodia which, after becoming multinucleate, cleaved to form zoosporangia con­taining incipient zoospores. Biflagellate zoospores were released from root hair zoosporangia and fused in pairs, although karyogamy did not occur. The resulting binucleate zoospores infected the cortical dells of B. rapa to form binucleate plasmodia, the earliest stages of the secondary phase of the life history. These findings are discussed in relation to previous studies on the life history of P. brassicae in Brassica plants and in Brassica tissue cultures, and a new complete life history, including nuclear fusion in the secondary plasmodium, is suggested for the organism.


Genome ◽  
2021 ◽  
Author(s):  
Muhammad Jakir Hasan ◽  
Swati Megha ◽  
Habibur Rahman

Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques and ‘omics’ research have helped to identify several major loci, QTL and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.


Plant Disease ◽  
2021 ◽  
Author(s):  
Nazanin Zamani-Noor ◽  
Sinja Brand ◽  
Hans-Peter Soechting

A series of greenhouse experiments was conducted to evaluate the effect of Plasmodiophora brassicae virulence on clubroot development and propagation of resting spores in 86 plant species from 19 botanical families. Plants were artificially inoculated with two isolates of P. brassicae, which were either virulent on clubroot-resistant oilseed rape cv. Mendel (P1 (+)) or avirulent on this cultivar (P1). Clubroot severity and the number of resting spores inside the roots were assessed 35 days post inoculation. Typical clubroot symptoms were observed only in the Brassicaceae family. P1 (+)-inoculated species exhibited more severe symptoms (2 to 10–fold more severe), bigger galls (1.1 to 5.8 fold heavier) and higher number of resting spores than the P1-inoculated plants. Among all Brassica species, Bunias orientalis, Coronopus squamatus and Raphanus sativus were fully resistant against both isolates, while Camelina sativa, Capsella bursa-pastoris, Coincya momensis, Descurainia sophia, Diplotaxis muralis, Erucastrum gallicum, Neslia paniculata, Sinapis alba, S. arvensis, Sisymbrium altissimum, S. loeselii and Thlaspi arvense were highly susceptible. Conringia orientalis, Diplotaxis tenuifolia, Hirschfeldia incana, Iberis amara, Lepidium campestre and Neslia paniculata were completely or partially resistant to P1-isolate but highly susceptible to P1 (+). These results propose that the basis for resistance in these species may be similar to that found in some commercial cultivars, and that these species could contribute to the build-up of inoculum of virulent pathotypes. Furthermore, the pathogen DNA was detected in Alopecurus myosuroides, Phacelia tanacatifolia, Papaver rhoeas and Pisum sativum. It can concluded that the number and diversity of hosts for P. brassicae are greater than previously reported.


2018 ◽  
pp. 97-100
Author(s):  
A. A. Ushakov ◽  
L. L. Bondareva ◽  
I. A. Engalycheva

Clubroot disease (causative organism Plasmodiophora brassicae Wor.) is among the most economically important and harmful diseases of the cole crops, and the damage due to this disease may reach up to 50-75% of the yield and even 100% in epiphytotics years. Even resistant varieties become susceptible over the years, because of appearance of the new pathogen races and change of climatic conditions in the main growing areas of the crop. In this context the Laboratory of Plant Immunity and Protection, of Federal State Budgetary Scientific Institution “Federal Scientific Vegetable Center” implements continuous phytoimmunological evaluation of collection and selection specimens and also directional material rather than just annual monitoring of causative organism dissemination in order to find new resistance sources. For this purpose an artificial infection background is used: compost obtained from decomposed nodules on the cabbage roots affected by clubroot disease (infection load 105-106 spores/cm3). The resistance of white cabbage varieties was evaluated during the harvesting period using five-point score of the root system damage, which formed the basis for categorization into resistance groups. For the analysis of artificial background intensity and specimen ranking the individual plants of the white cabbage variety Slava 1305, which is a susceptibility standard, were randomly planted in the entire area of the infection background. The impact of atmospheric conditions in the study year on the results of phytopathological evaluation of cabbage selection specimens against the infection background is demonstrated. Under unfavorable conditions for pathogen development (2014) the most specimens (74%) were categorized as relatively resistant, while in favourable for pathogen year 2015 relatively resistant specimens comprised only 5% of the total number of studied specimens. Since the same specimen may show different level of resistance depending on the year conditions, the stability of character manifestation is the important criterion for identification of the resistance resources. Phytopathological evaluation aimed on selection of clubroot-resistant forms in the Moscow region should last for at least three years even with the use of infection background. Long-lasting evaluation showed that the strains No 234/15,140/14,216/17 exhibiting high resistance to clubroot against artificial infection background regardless of the year conditions are the most valuable for selection. The resistance of white cabbage selection varieties to clubroot disease was studied against the infection background.


2013 ◽  
Vol 103 (4) ◽  
pp. 306-315 ◽  
Author(s):  
Jacqueline Fletcher ◽  
Jan E. Leach ◽  
Kellye Eversole ◽  
Robert Tauxe

Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant–microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.


2018 ◽  
Vol 56 (1) ◽  
pp. 581-610 ◽  
Author(s):  
Cristina Rosa ◽  
Yen-Wen Kuo ◽  
Hada Wuriyanghan ◽  
Bryce W. Falk

The origin of RNA interference (RNAi), the cell sentinel system widely shared among eukaryotes that recognizes RNAs and specifically degrades or prevents their translation in cells, is suggested to predate the last eukaryote common ancestor ( 138 ). Of particular relevance to plant pathology is that in plants, but also in some fungi, insects, and lower eukaryotes, RNAi is a primary and effective antiviral defense, and recent studies have revealed that small RNAs (sRNAs) involved in RNAi play important roles in other plant diseases, including those caused by cellular plant pathogens. Because of this, and because RNAi can be manipulated to interfere with the expression of endogenous genes in an intra- or interspecific manner, RNAi has been used as a tool in studies of gene function but also for plant protection. Here, we review the discovery of RNAi, canonical mechanisms, experimental and translational applications, and new RNA-based technologies of importance to plant pathology.


Sign in / Sign up

Export Citation Format

Share Document