stress promoter
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 22 (17) ◽  
pp. 9571
Author(s):  
Andrew G. Kessenikh ◽  
Uliana S. Novoyatlova ◽  
Sergey V. Bazhenov ◽  
Eugeniya A. Stepanova ◽  
Svetlana A. Khrulnova ◽  
...  

Here, we present a new lux-biosensor based on Bacillus subtilis for detecting of DNA-tropic and oxidative stress-causing agents. Hybrid plasmids pNK-DinC, pNK-AlkA, and pNK-MrgA have been constructed, in which the Photorhabdus luminescens reporter genes luxABCDE are transcribed from the stress-inducible promoters of B. subtilis: the SOS promoter PdinC, the methylation-specific response promoter PalkA, and the oxidative stress promoter PmrgA. The luminescence of B. subtilis-based biosensors specifically increases in response to the appearance in the environment of such common toxicants as mitomycin C, methyl methanesulfonate, and H2O2. Comparison with Escherichia coli-based lux-biosensors, where the promoters PdinI, PalkA, and Pdps were used, showed generally similar characteristics. However, for B. subtilis PdinC, a higher response amplitude was observed, and for B. subtilis PalkA, on the contrary, both the amplitude and the range of detectable toxicant concentrations were decreased. B. subtilis PdinC and B. subtilis PmrgA showed increased sensitivity to the genotoxic effects of the 2,2′-bis(bicyclo [2.2.1] heptane) compound, which is a promising propellant, compared to E. coli-based lux-biosensors. The obtained biosensors are applicable for detection of toxicants introduced into soil. Such bacillary biosensors can be used to study the differences in the mechanisms of toxicity against Gram-positive and Gram-negative bacteria.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Liu ◽  
Yun Jiang ◽  
Yazhong Jin ◽  
Chenghui Wang ◽  
Juan Yang ◽  
...  

Abstract Background Cinnamyl alcohol dehydrogenase (CAD) is an important enzyme functions at the last step in lignin monomer synthesis pathway. Our previous work found that drought induced the expressions of CmCAD genes and promoted lignin biosynthesis in melon stems. Results Here we studied the effects of abscisic acid (ABA), hydrogen peroxide (H2O2) and jasmonic acid (JA) to CmCADs under drought stress. Results discovered that drought-induced ABA, H2O2 and MeJA were prevented efficiently from increasing in melon stems pretreated with fluridone (Flu, ABA inhibitor), imidazole (Imi, H2O2 scavenger) and ibuprofen (Ibu, JA inhibitor). ABA and H2O2 are involved in the positive regulations to CmCAD1, 2, 3, and 5, and JA is involved in the positive regulations to CmCAD2, 3, and 5. According to the expression profiles of lignin biosynthesis genes, ABA, H2O2 and MeJA all showed positive regulations to CmPAL2-like, CmPOD1-like, CmPOD2-like and CmLAC4-like. In addition, positive regulations were also observed with ABA to CmPAL1-like, CmC4H and CmCOMT, with H2O2 to CmPAL1-like, CmC4H, CmCCR and CmLAC17-like, and with JA to CmCCR, CmCOMT, CmLAC11-like and CmLAC17-like. As expected, the signal molecules positively regulated CAD activity and lignin biosynthesis under drought stress. Promoter::GUS assays not only further confirmed the regulations of the signal molecules to CmCAD1~3, but also revealed the important role of CmCAD3 in lignin synthesis due to the strongest staining of CmCAD3 promoter::GUS. Conclusions CmCADs but CmCAD4 are positively regulated by ABA, H2O2 and JA under drought stress and participate in lignin synthesis.


2017 ◽  
Vol 18 (6) ◽  
pp. 1112 ◽  
Author(s):  
Leonie van Rijt ◽  
Lara Utsch ◽  
René Lutter ◽  
Ronald van Ree

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hui Fang ◽  
Yun-Jun Sun ◽  
Yan-Hong Lv ◽  
Rong-Jun Ni ◽  
Yu-Mian Shu ◽  
...  

2001 ◽  
Vol 6 (6) ◽  
pp. 421-428
Author(s):  
C. Renee Albano ◽  
Canghai Lu ◽  
William E. Bentley ◽  
Govind Rao

Green fluorescent protein fusions were constructed with several oxidative stress promoters from Escherichia coli. These promoters were chosen for their induction by reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and hydroxyl radicals. When exposed to various free radical insults, the cells fluoresced with great specificity based on the corresponding ROS. In this work, we propose a way in which these constructs could be used to study the mode of action of a variety of antitumor drugs. This approach offers the possibility of complementing gene chip technology by the creation of living chips for high throughput screening as well as studying differential gene expression.


Sign in / Sign up

Export Citation Format

Share Document