desiccation process
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Lucas Martín Garino Libardi ◽  
Luciano Agustín Oldecop ◽  
Enrique Edgar Romero Morales ◽  
Roberto Lorenzo Rodriguez Pacheco


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Ren ◽  
Rebecca Brenner ◽  
Thomas C. Boothby ◽  
Zhaojie Zhang

Abstract Background Anhydrobiotes, such as the yeast Saccharomyces cerevisiae, are capable of surviving almost total loss of water. Desiccation tolerance requires an interplay of multiple events, including preserving the protein function and membrane integrity, preventing and mitigating oxidative stress, maintaining certain level of energy required for cellular activities in the desiccated state. Many of these crucial processes can be controlled and modulated at the level of organelle morphology and dynamics. However, little is understood about what organelle perturbations manifest in desiccation-sensitive cells as a consequence of drying or how this differs from organelle biology in desiccation-tolerant organisms undergoing anhydrobiosis. Results In this study, electron and optical microscopy was used to examine the dynamic changes of yeast cells during the desiccation process. Dramatic structural changes were observed during the desiccation process, including the diminishing of vacuoles, decrease of lipid droplets, decrease in mitochondrial cristae and increase of ER membrane, which is likely caused by ER stress and unfolded protein response. The survival rate was significantly decreased in mutants that are defective in lipid droplet biosynthesis, or cells treated with cerulenin, an inhibitor of fatty acid synthesis. Conclusion Our study suggests that the metabolism of lipid droplets and membrane may play an important role in yeast desiccation tolerance by providing cells with energy and possibly metabolic water. Additionally, the decrease in mitochondrial cristae coupled with a decrease in lipid droplets is indicative of a cellular response to reduce the production of reactive oxygen species.



2020 ◽  
Author(s):  
Qun Ren ◽  
Rebecca Brenner ◽  
Thomas C. Boothby ◽  
Zhaojie Zhang

Abstract Background Anhydrobiotes, such as the yeast Saccharomyces cerevisiae, are capable of surviving almost total loss of water. Desiccation tolerance requires an interplay of multiple events, including preserving the protein function and membrane integrity, preventing and mitigating oxidative stress, maintaining certain level of energy required for cellular activities in the desiccated state. Many of these crucial processes can be controlled and modulated at the level of organelle morphology and dynamics. However, little is understood about what organelle perturbations manifest in desiccation-sensitive cells as a consequence of drying or how this differs from organelle biology in desiccation-tolerant organisms undergoing anhydrobiosis.Results In this study, electron and optical microscopy was used to examine the dynamic changes of yeast cells during the desiccation process. Dramatic structural changes were observed during the desiccation process, including the diminishing of vacuoles, decrease of lipid droplets, decrease in mitochondrial cristae and increase of ER membrane, which is likely caused by ER stress and unfolded protein response. The survival rate was significantly decreased in mutants that are defective in lipid droplet biosynthesis, or cells treated with cerulenin, an inhibitor of fatty acid synthesis.Conclusion Our study suggests that the metabolism of lipid droplets and membrane may play an important role in yeast desiccation tolerance by providing cells with energy and possibly metabolic water. Additionally, the decrease in mitochondrial cristae coupled with a decrease in lipid droplets is indicative of a cellular response to reduce the production of reactive oxygen species.



2020 ◽  
Author(s):  
Qun Ren ◽  
Rebecca Brenner ◽  
Thomas C. Boothby ◽  
Zhaojie Zhang

Abstract BackgroundAnhydrobiotes, such as the yeast Saccharomyces cerevisiae, are capable of surviving almost total loss of water. Desiccation tolerance requires an interplay of multiple events, including preserving the protein function and membrane integrity, preventing and mitigating oxidative stress, maintaining certain level of energy required for cellular activities in the desiccated state. Many of these crucial processes can be controlled and modulated at the level of organelle morphology and dynamics. However, little is understood about what organelle perturbations manifest in desiccation-sensitive cells as a consequence of drying or how this differs from organelle biology in desiccation-tolerant organisms undergoing anhydrobiosis.ResultsIn this study, electron and optical microscopy was used to examine the dynamic changes of yeast cells during the desiccation process. Dramatic structural changes were observed during the desiccation process, including the diminishing of vacuoles, decrease of lipid droplets, decrease in mitochondrial cristae and increase of ER membrane, which is likely caused by ER stress and unfolded protein response. The survival rate was significantly decreased in mutants that are defective in lipid droplet biosynthesis, or cells treated with cerulenin, an inhibitor of fatty acid synthesis.ConclusionOur study suggests that the metabolism of lipid droplets and membrane may play an important role in yeast desiccation tolerance by providing cells with energy and possibly metabolic water. Additionally, the decrease in mitochondrial cristae coupled with a decrease in lipid droplets is indicative of a cellular response to reduce the production of reactive oxygen species.



2020 ◽  
Author(s):  
Qun Ren ◽  
Rebecca Brenner ◽  
Thomas C. Boothby ◽  
Zhaojie Zhang

Abstract Background: Anhydrobiotes, such as the yeast Saccharomyces cerevisiae , are capable of surviving almost total loss of water. Desiccation tolerance requires an interplay of multiple events, including preserving the protein function and membrane integrity, preventing and mitigating oxidative stress, maintaining certain level of energy required for cellular activities in the desiccated state. Many of these crucial processes can be controlled and modulated at the level of organelle morphology and dynamics. However, little is understood about what organelle perturbations manifest in desiccation-sensitive cells as a consequence of drying or how this differs from organelle biology in desiccation-tolerant organisms undergoing anhydrobiosis. Results: In this study, electron and optical microscopy was used to examine the dynamic changes of yeast cells during the desiccation process. Dramatic structural changes were observed during the desiccation process, including the diminishing of vacuoles, and increase and then decrease of lipid droplets as well as a decrease in mitochondria and mitochondrial cristae and an increase of ER membrane, which is likely caused by ER stress and unfolded protein response. The survival rate was significantly decreased in mutants that are defective in lipid droplet biosynthesis, or cells treated with cerulenin, an inhibitor of fatty acid synthesis. Conclusion: Our study suggests that the metabolism of lipid droplets and membrane may play an important role in yeast desiccation tolerance by providing cells with energy and possibly metabolic water. Additionally, the decrease in mitochondria and cristae coupled with an initial increase and then drop in lipid droplets number is indicative of a cellular response to reduce the production of reactive oxygen species.



Icarus ◽  
2020 ◽  
Vol 336 ◽  
pp. 113435 ◽  
Author(s):  
Xiaohui Fu ◽  
Liangchen Jia ◽  
Alian Wang ◽  
Haijun Cao ◽  
Zongcheng Ling ◽  
...  


2019 ◽  
Vol 366 (Supplement_1) ◽  
pp. i49-i59
Author(s):  
Martín Sebastián Marcial-Coba ◽  
Susanne Knøchel ◽  
Dennis Sandris Nielsen

ABSTRACT To exert a beneficial effect on the host, adequate doses of probiotics must be administered and maintaining their viability until consumption is thus essential. Dehydrated probiotics exhibit enhanced long-term viability and can be incorporated into low-moisture food matrices, which also possess high stability at refrigeration and ambient temperature. However, several factors associated with the desiccation process, the physicochemical properties of the matrix and the storage conditions can affect probiotic survival. In the near future, an increased demand for probiotics based on functionally dominant members of the gut microbiome (‘next-generation probiotics’, NGP) is expected. NGPs are very sensitive to oxygen and efficient encapsulation protocols are needed. Strategies to improve the viability of traditional probiotics and particularly of NGPs involve the selection of a suitable carrier as well as proper desiccation and protection techniques. Dehydrated probiotic microcapsules may constitute an alternative to improve the microbial viability during not only storage but also upper gastrointestinal tract passage. Here we review the main dehydration techniques that are applied in the industry as well as the potential stresses associated with the desiccation process and storage. Finally, low- or intermediate-moisture food matrices suitable as carriers of traditional as well as NGPs will be discussed.





Sign in / Sign up

Export Citation Format

Share Document