heterogeneous canopies
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 2)

2020 ◽  
Vol 13 (10) ◽  
pp. 4789-4808
Author(s):  
Brian N. Bailey ◽  
María A. Ponce de León ◽  
E. Scott Krayenhoff

Abstract. Despite recent advances in the development of detailed plant radiative transfer models, large-scale canopy models generally still rely on simplified one-dimensional (1-D) radiation models based on assumptions of horizontal homogeneity, including dynamic ecosystem models, crop models, and global circulation models. In an attempt to incorporate the effects of vegetation heterogeneity or “clumping” within these simple models, an empirical clumping factor, commonly denoted by the symbol Ω, is often used to effectively reduce the overall leaf area density and/or index value that is fed into the model. While the simplicity of this approach makes it attractive, Ω cannot in general be readily estimated for a particular canopy architecture and instead requires radiation interception data in order to invert for Ω. Numerous simplified geometric models have been previously proposed, but their inherent assumptions are difficult to evaluate due to the challenge of validating heterogeneous canopy models based on field data because of the high uncertainty in radiative flux measurements and geometric inputs. This work provides a critical review of the origin and theory of models for radiation interception in heterogeneous canopies and an objective comparison of their performance. Rather than evaluating their performance using field data, where uncertainty in the measured model inputs and outputs can be comparable to the uncertainty in the model itself, the models were evaluated by comparing against simulated data generated by a three-dimensional leaf-resolving model in which the exact inputs are known. A new model is proposed that generalizes existing theory and is shown to perform very well across a wide range of canopy types and ground cover fractions.


2020 ◽  
Vol 119 ◽  
pp. 126102 ◽  
Author(s):  
Laurène Perthame ◽  
Nathalie Colbach ◽  
Sophie Brunel-Muguet ◽  
Hugues Busset ◽  
Julianne M. Lilley ◽  
...  

2020 ◽  
Vol 44 (1) ◽  
pp. 102-113
Author(s):  
Ningyi Zhang ◽  
Arian Westreenen ◽  
Lizhong He ◽  
Jochem B. Evers ◽  
Niels P. R. Anten ◽  
...  

2020 ◽  
Author(s):  
Brian N. Bailey ◽  
Maria A. Ponce de León ◽  
E. Scott Krayenhoff

Abstract. Despite recent advances in the development of detailed plant radiative transfer models, the large-scale canopy models generally still rely on simplified one-dimensional (1D) radiation models based on assumptions of horizontal homogeneity, including dynamic ecosystem models, crop models, and global circulation models. In an attempt to incorporate the effects of vegetation heterogeneity or clumping within these simple models, an empirical clumping factor, commonly denoted by the symbol Ω, is often used to effectively reduce the overall leaf area density/index value that is fed into the model. While the simplicity of this approach makes it attractive, Ω cannot in general be readily estimated for a particular canopy architecture, and instead requires radiation interception data in order to invert for Ω. Numerous simplified geometric models have been previously proposed, but their inherent assumptions are difficult to evaluate due to the challenge of validating heterogeneous canopy models based on field data because of the high uncertainty in radiative flux measurements and geometric inputs. This work provides a critical review of the origin and theory of models for radiation interception in heterogeneous canopies, and an objective comparison of their performance. Rather than evaluating their performance using field data, where uncertainty in the measurement model inputs and outputs can be comparable to the uncertainty in the model itself, the models were evaluated by comparing against simulated data generated by a three-dimensional leaf-resolving model in which the exact inputs are known. A new model is proposed that generalizes existing theory, is shown to perform very well across a wide range of canopy types and ground cover fractions.


2019 ◽  
Vol 11 (22) ◽  
pp. 2642 ◽  
Author(s):  
Zhang ◽  
Zhang ◽  
Li ◽  
Wu ◽  
Zhang

During recent decades, solar-induced chlorophyll fluorescence (SIF) has shown to be a good proxy for gross primary production (GPP), promoting the development of ground-based SIF observation systems and supporting a greater understanding of the relationship between SIF and GPP. However, it is unclear whether such SIF-oriented observation systems built from different materials and of different configurations are able to acquire consistent SIF signals from the same target. In this study, we used four different observation systems to measure the same targets together in order to investigate whether SIF from different systems is comparable. Integration time (IT), reflectance, and SIF retrieved from different systems with hemispherical-conical (hemi-con) and bi-hemispherical (bi-hemi) configurations were also evaluated. A newly built prism system (SIFprism, using prism to collect both solar and target radiation) has the shortest IT and highest signal to noise ratio (SNR). Reflectance collected from the different systems showed small differences, and the diurnal patterns of both red and far-red SIF derived from different systems showed a marginal difference when measuring the homogeneous vegetation canopy (grassland). However, when the target is heterogeneous, e.g., the Epipremnum aureum canopy, the values and diurnal pattern of far-red SIF derived from systems with a bi-hemi configuration were obviously different with those derived from the system with hemi-con configuration. These results demonstrate that different SIF systems are able to acquire consistent SIF for landscapes with a homogeneous canopy. However, SIF retrieved from bi-hemi and hemi-con configurations may be distinctive when the target is a heterogeneous (or discontinuous) canopy due to the different fields of view and viewing geometries. Our findings suggest that the bi-hemi configuration has an advantage to measure heterogeneous canopies due to the large field of view for upwelling sensors being representative for the footprint of the eddy covariance flux measurements.


2019 ◽  
Vol 126 (4) ◽  
pp. 587-599 ◽  
Author(s):  
Ningyi Zhang ◽  
Arian van Westreenen ◽  
Jochem B Evers ◽  
Niels P R Anten ◽  
Leo F M Marcelis

Abstract Background and Aims The success of using bent shoots in cut-rose (Rosa hybrida) production to improve flower shoot quality has been attributed to bent shoots capturing more light and thus providing more assimilates for flower shoot growth. We aimed at quantifying this contribution of photosynthesis by bent shoots to flower shoot growth. Methods Rose plants were grown with four upright flower shoots and with no, one or three bent shoots per plant. Plant architectural traits, leaf photosynthetic parameters and organ dry weight were measured. A functional–structural plant (FSP) model of rose was used to calculate photosynthesis of upright shoots and bent shoots separately, taking into account the heterogeneous canopy structure of these plants. Key Results Bent shoots contributed to 43–53 % of total assimilated CO2 by the plant. Plant photosynthesis increased by 73 and 117 % in plants with, respectively, one and three bent shoots compared with plants without bent shoots. Upright shoot photosynthesis was not significantly affected by the presence of bent shoots. However, upright shoot dry weight increased by 35 and 59 % in plants with, respectively, one and three bent shoots compared with plants without bent shoots. The increased upright shoot dry weight was entirely due to the contribution of extra photosynthesis by bent shoots, as this was the only source that could induce differences in upright shoot growth apart from their own photosynthesis. At least 47–51 % of the photosynthesis by bent shoots was translocated to upright shoots to support their biomass increase. Conclusions Based on model simulations, we conclude that the positive effect of shoot bending on flower shoot growth and quality in cut-rose production system can almost entirely be attributed to assimilate supply from bent shoots. FSP modelling is a useful tool to quantify the contributions of photosynthesis by different parts of heterogeneous canopies.


2018 ◽  
Vol 10 (7) ◽  
pp. 1133 ◽  
Author(s):  
Qinan Lin ◽  
Huaguo Huang ◽  
Linfeng Yu ◽  
Jingxu Wang

Yunnan pine shoot beetles (PSB), Tomicus yunnanensis and Tomicus minor have spread through southwestern China in the last five years, leading to millions of hectares of forest being damaged. Thus, there is an urgent need to develop an effective approach for accurate early warning and damage assessment of PSB outbreaks. Remote sensing is one of the most efficient methods for this purpose. Despite many studies existing on the mountain pine beetle (MPB), very little work has been undertaken on assessing PSB stress using remote sensing. The objective of this paper was to develop a spectral linear mixing model aided by radiative transfer (RT) and a new Yellow Index (YI) to simulate the reflectance of heterogeneous canopies containing damaged needles and quantitatively inverse their PSB stress. The YI, the fraction of dead needles, is a physically-explicit stress indicator that represents the plot shoots damage ratio (plot SDR). The major steps of this methods include: (1) LIBERTY2 was developed to simulate the reflectance of damaged needles using YI to linearly mix the green needle spectra with the dead needle spectra; (2) LIBERTY2 was coupled with the INFORM model to scale the needle spectra to the canopy scale; and (3) a look-up table (LUT) was created against Sentinel 2 (S2) imagery and inversed leaf chlorophyll content (LCC), green leaf area index (LAI) and plot SDR. The results show that (1) LIBERTY2 effectively simulated the reflectance spectral values on infested needles (mean relative error (MRE) = 1.4–18%), and the YI can indicate the degrees of needles damage; (2) the coupled LIBERTY2-INFORM model is suitable to estimate LAI (R2 = 0.73, RMSE = 0.17 m m−2, NRMSE = 11.41% and the index of agreement (IOA) = 0.92) and LCC (R2 = 0.49, RMSE = 56.24 mg m−2, NRMSE = 25.22% and IOA = 0.72), and is better than the original LIBERTY model (LAI: R2 = 0.38, RMSE = 0.43 m m−2, NRMSE = 28.85% and IOA = 0.68; LCC: R2 = 0.34, RMSE = 76.44 mg m−2, NRMSE = 34.23% and IOA = 0.57); and (3) the inversed YI is positively correlated with the measured plot SDR (R2 = 0.40, RMSE = 0.15). We conclude that the LIBERTY2 model improved the reflectance simulation accuracy of both the needles and canopies, making it suitable for assessing PSB stress. The YI has the potential to assess PSB damage.


2017 ◽  
Vol 813 ◽  
pp. 1176-1196 ◽  
Author(s):  
A. M. Hamed ◽  
M. J. Sadowski ◽  
H. M. Nepf ◽  
L. P. Chamorro

The flow development above and within homogeneous and heterogeneous canopies was experimentally studied using particle image velocimetry in a refractive-index-matching channel. The experiments were designed to gain insight into the effect of height heterogeneity on the structure and spatial distribution of the turbulence. The homogeneous model (base case) is constituted of elements of height $h$ arranged in a staggered configuration; whereas the heterogeneous canopy resembled a row canopy and consisted of elements of two heights $h_{1}=h+(1/3)h$ and $h_{2}=h-(1/3)h$ alternated every two rows. Both canopies had the same density, element geometry and mean height. The flow was studied under three submergences $H/h=2$, 3 and 4, where $H$ denotes the flow depth. The experiments were performed at Reynolds number $Re_{H}\simeq 6500$, 11 300 and 12 300 and nearly constant Froude number $Fr\simeq 0.1$. Turbulence statistics complemented with quadrant analysis and proper orthogonal decomposition reveal richer flow dynamics induced by height heterogeneity. Topography-induced spatially periodic mean flows are observed for the heterogeneous canopy. Furthermore, and in contrast to the homogeneous case, non-vanishing vertical velocity is maintained across the entire length of the heterogeneous canopy with increased levels at lower submergence depths. Further alternations were induced in the magnitude and distribution of the turbulent kinetic energy, Reynolds shear stress and characteristics of the canopy mixing layer, evidencing enhanced mixing and turbulent transport for the heterogeneous canopy especially at lower submergence depths. Overall, the results indicate that heterogeneous canopies exhibit greater vertical turbulent exchange at the canopy interface, suggesting a potential for greater scalar exchange and a greater impact on channel hydraulic resistance than a homogeneous canopy of similar roughness density.


Sign in / Sign up

Export Citation Format

Share Document