causal intervention
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 16)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zengri Zeng ◽  
Wei Peng ◽  
Baokang Zhao

In recent years, machine learning (ML) algorithms have been approved effective in the intrusion detection. However, as the ML algorithms are mainly applied to evaluate the anomaly of the network, the detection accuracy for cyberattacks with multiple types cannot be fully guaranteed. The existing algorithms for network intrusion detection based on ML or feature selection are on the basis of spurious correlation between features and cyberattacks, causing several wrong classifications. In order to tackle the abovementioned problems, this research aimed to establish a novel network intrusion detection system (NIDS) based on causal ML. The proposed system started with the identification of noisy features by causal intervention, while only the features that had a causality with cyberattacks were preserved. Then, the ML algorithm was used to make a preliminary classification to select the most relevant types of cyberattacks. As a result, the unique labeled cyberattack could be detected by the counterfactual detection algorithm. In addition to a relatively stable accuracy, the complexity of cyberattack detection could also be effectively reduced, with a maximum reduction to 94% on the size of training features. Moreover, in case of the availability of several types of cyberattacks, the detection accuracy was significantly improved compared with the previous ML algorithms.


2021 ◽  
Author(s):  
Weiqing Huang ◽  
Miao Jiang ◽  
Min Li ◽  
Bo Meng ◽  
Junxing Ren ◽  
...  

2021 ◽  
Author(s):  
Feifei Shao ◽  
Yawei Luo ◽  
Li Zhang ◽  
Lu Ye ◽  
Siliang Tang ◽  
...  

Author(s):  
Kai Wang ◽  
Yu Liu ◽  
Quan Z. Sheng

Link prediction based on knowledge graph embeddings (KGE) has recently drawn a considerable momentum. However, existing KGE models suffer from insufficient accuracy and hardly evaluate the confidence probability of each predicted triple. To fill this critical gap, we propose a novel confidence measurement method based on causal intervention, called Neighborhood Intervention Consistency (NIC). Unlike previous confidence measurement methods that focus on the optimal score in a prediction, NIC actively intervenes in the input entity vector to measure the robustness of the prediction result. The experimental results on ten popular KGE models show that our NIC method can effectively estimate the confidence score of each predicted triple. The top 10% triples with high NIC confidence can achieve 30% higher accuracy in the state-of-the-art KGE models.


Author(s):  
Wenqing Chen ◽  
Jidong Tian ◽  
Caoyun Fan ◽  
Hao He ◽  
Yaohui Jin

Recent work for image captioning mainly followed an extract-then-generate paradigm, pre-extracting a sequence of object-based features and then formulating image captioning as a single sequence-to-sequence task. Although promising, we observed two problems in generated captions: 1) content inconsistency where models would generate contradicting facts; 2) not informative enough where models would miss parts of important information. From a causal perspective, the reason is that models have captured spurious statistical correlations between visual features and certain expressions (e.g., visual features of "long hair" and "woman"). In this paper, we propose a dependent multi-task learning framework with the causal intervention (DMTCI). Firstly, we involve an intermediate task, bag-of-categories generation, before the final task, image captioning. The intermediate task would help the model better understand the visual features and thus alleviate the content inconsistency problem. Secondly, we apply Pearl's do-calculus on the model, cutting off the link between the visual features and possible confounders and thus letting models focus on the causal visual features. Specifically, the high-frequency concept set is considered as the proxy confounders where the real confounders are inferred in the continuous space. Finally, we use a multi-agent reinforcement learning (MARL) strategy to enable end-to-end training and reduce the inter-task error accumulations. The extensive experiments show that our model outperforms the baseline models and achieves competitive performance with state-of-the-art models.


2021 ◽  
Vol 9 ◽  
pp. 160-175
Author(s):  
Yanai Elazar ◽  
Shauli Ravfogel ◽  
Alon Jacovi ◽  
Yoav Goldberg

Abstract A growing body of work makes use of probing in order to investigate the working of neural models, often considered black boxes. Recently, an ongoing debate emerged surrounding the limitations of the probing paradigm. In this work, we point out the inability to infer behavioral conclusions from probing results, and offer an alternative method that focuses on how the information is being used, rather than on what information is encoded. Our method, Amnesic Probing, follows the intuition that the utility of a property for a given task can be assessed by measuring the influence of a causal intervention that removes it from the representation. Equipped with this new analysis tool, we can ask questions that were not possible before, for example, is part-of-speech information important for word prediction? We perform a series of analyses on BERT to answer these types of questions. Our findings demonstrate that conventional probing performance is not correlated to task importance, and we call for increased scrutiny of claims that draw behavioral or causal conclusions from probing results.1


Sign in / Sign up

Export Citation Format

Share Document