fluid viscous damper
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 17)

H-INDEX

4
(FIVE YEARS 1)

2022 ◽  
pp. 136943322110700
Author(s):  
Wenxue Zhang ◽  
Lijun Su ◽  
Cheng Zhang ◽  
Yongrui Zheng ◽  
Weifeng Yang

The seismic requirements of piers with fixed bearings (the fixed pier) for continuous girder bridges are relatively high, while the potential seismic capabilities of piers with sliding bearings (the sliding piers) are not fully utilized. To solve this contradiction, a new type of winding rope shock absorption device activated by a fluid viscous damper (WRD-D) was proposed. The WRD-D was installed on the top of the sliding piers, and the both ends of a fluid viscous damper were connected to the superstructure by winding ropes. During an earthquake, the damping force rises with the increase of relative speed between the sliding piers and the superstructure, activating the WRD-D and producing large frictional resistance, subsequently causing the sliding piers and the fixed pier to bear the seismic load cooperatively. In this study, the working mechanism of the WRD-D was researched. The shaking table test of a scaled continuous girder bridge model employing the WRD-D was conducted. The test results reveal that the WRD-D can effectively reduce the seismic requirements of the fixed pier and the superstructure displacements.


2021 ◽  
pp. 711-731
Author(s):  
Basanagouda I. Patil ◽  
Bapugouda B. Biradar ◽  
Rashmi Doddamani

2021 ◽  
Author(s):  
Xiaolei Jiao ◽  
Jinxiu Zhang ◽  
Wenbo Li ◽  
Jingjing Mu

Abstract The three-parameter fluid viscous damper is used to isolate micro-vibration produced by control torque gyro (CMG) in satellite. In this paper, the damper is simplified by a single tube fluid viscous damper and two springs connected to the damping piston. With consideration of the principal stiffness of the bellows and the contraction and expansion effect of the damping orifice, the approximate analytical nonlinear model of the damper is established and verified by the computation fluid mechanics (CFD) method. Based on this analytical model, the displacement response of the damper and correction coefficient of hydraulic resistance are analyzed, the nonlinear characteristics in the frequency domain are also revealed. Furthermore, the energy consumptions of the nonlinear model and linear model are researched. The results show that the damper has an obvious amplitude at the first resonance peak, but not obvious at the second resonance peak. The vibration amplitude of the damping piston is only um level in the high-frequency domain. The correction coefficient of the hydraulic resistance at the resonance peak is much higher than other frequencies, which causes a significant nonlinear behavior. In addition, the energy consumption of the nonlinear model is larger than that of the linear model at the resonance peak, and the larger the resonance peak, the more obvious the phenomenon is. This means that the nonlinear damping can be used to further improve the suppression of the resonance peak of the three-parameter fluid viscous damper.


2021 ◽  
Vol 263 ◽  
pp. 03015
Author(s):  
Thanh Binh Pham ◽  
Ngoc Quang Vu

Since the appearance of the first modern multistories buildings, besides the demand of ensuring the bearing capacity, one of the urgent problems facing the engineer is to do how to design structure to ensure the requirements of normal use such as displacement, motion acceleration within permissible limits. There exist many methods to reduce these response of structure under lateral load. Among these, using fluid viscous damper (FVD) is one of the most applied equipment because of its simplicity. This paper presents the examination of eight-story steel frame structure subjected to seismic load. The FVD system is defined in Etabs with link properties. In each story, four dampers are located in each direction of plan, with two on each side of the center of stiffness of the story. The time history analysis was conducted to study the structure subjected to seimic load collected from the function library of program Etabs. The effect of FVD system was determined by the dynamic response of the building and displacement indexes such as maximum displacement of roof, story drift ratio. The results show that, all the dynamic response characters of structure were decreased significantly when providing the FVD to it.


2021 ◽  
Author(s):  
Laura Gioiella ◽  
Fabrizio Scozzese ◽  
Enrico Tubaldi ◽  
Laura Ragni ◽  
Andrea Dall'Asta

2020 ◽  
Vol 10 (17) ◽  
pp. 6049
Author(s):  
Yale Li ◽  
Zhouhong Zong ◽  
Bingwen Yang ◽  
Yuanzheng Lin ◽  
Jin Lin

Bridge collapse events are common in major earthquakes around the world, among which continuous girder bridges are the most involved. In order to explore the collapse mechanism of a continuous girder bridge in an earthquake, the collapse mode of a two-span continuous girder bridge specimen which had been studied by the shaking table test was analyzed. Then, on the basis of the conventional plate rubber bearing system, the collapse control strategies which were high damping rubber bearing, fluid viscous damper, lock-up clutch control methods were discussed. It is found that high damping rubber bearing can delay the collapse time but the collapse mode remains the same; lock-up clutch has the best displacement control effect for the superstructure, but its energy consumption performance is not as good as that of a fluid viscous damper; high damping rubber bearing is quite suitable for protecting the substructure under short-period ground motion to avoid the bridge collapse caused by the failure of piers; fluid viscous damper and lock-up clutch are suitable for protecting the superstructure under long ground seismic motion to avoid the bridge non-use resulted from girder lowering; three collapse control methods can improve the anti-collapse ability of the bridge specimen, although no matter which control method is used, the bridge specimen may still collapse under strong earthquakes, but the target of postponing collapse time can be realized by means of various effective control methods.


Sign in / Sign up

Export Citation Format

Share Document