scholarly journals Research on Longitudinal Collapse Mode and Control of the Continuous Bridge under Strong Seismic Excitations

2020 ◽  
Vol 10 (17) ◽  
pp. 6049
Author(s):  
Yale Li ◽  
Zhouhong Zong ◽  
Bingwen Yang ◽  
Yuanzheng Lin ◽  
Jin Lin

Bridge collapse events are common in major earthquakes around the world, among which continuous girder bridges are the most involved. In order to explore the collapse mechanism of a continuous girder bridge in an earthquake, the collapse mode of a two-span continuous girder bridge specimen which had been studied by the shaking table test was analyzed. Then, on the basis of the conventional plate rubber bearing system, the collapse control strategies which were high damping rubber bearing, fluid viscous damper, lock-up clutch control methods were discussed. It is found that high damping rubber bearing can delay the collapse time but the collapse mode remains the same; lock-up clutch has the best displacement control effect for the superstructure, but its energy consumption performance is not as good as that of a fluid viscous damper; high damping rubber bearing is quite suitable for protecting the substructure under short-period ground motion to avoid the bridge collapse caused by the failure of piers; fluid viscous damper and lock-up clutch are suitable for protecting the superstructure under long ground seismic motion to avoid the bridge non-use resulted from girder lowering; three collapse control methods can improve the anti-collapse ability of the bridge specimen, although no matter which control method is used, the bridge specimen may still collapse under strong earthquakes, but the target of postponing collapse time can be realized by means of various effective control methods.

2022 ◽  
pp. 136943322110700
Author(s):  
Wenxue Zhang ◽  
Lijun Su ◽  
Cheng Zhang ◽  
Yongrui Zheng ◽  
Weifeng Yang

The seismic requirements of piers with fixed bearings (the fixed pier) for continuous girder bridges are relatively high, while the potential seismic capabilities of piers with sliding bearings (the sliding piers) are not fully utilized. To solve this contradiction, a new type of winding rope shock absorption device activated by a fluid viscous damper (WRD-D) was proposed. The WRD-D was installed on the top of the sliding piers, and the both ends of a fluid viscous damper were connected to the superstructure by winding ropes. During an earthquake, the damping force rises with the increase of relative speed between the sliding piers and the superstructure, activating the WRD-D and producing large frictional resistance, subsequently causing the sliding piers and the fixed pier to bear the seismic load cooperatively. In this study, the working mechanism of the WRD-D was researched. The shaking table test of a scaled continuous girder bridge model employing the WRD-D was conducted. The test results reveal that the WRD-D can effectively reduce the seismic requirements of the fixed pier and the superstructure displacements.


2020 ◽  
Vol 6 (2) ◽  
pp. 181-194
Author(s):  
Syahnandito ◽  
Reni Suryanita ◽  
Ridwan

Salah satu cara yang dapat dilakukan adalah menggunakan peredam beban gempa dengan sistem isolasi dasar (base isolation system). Penggunaan base isolation system  pada bangunan dapat mengisolasi perambatan getaran akibat gempa dari tanah ke struktur atas bangunan menggunakan komponen berbahan karet. Tujuan penelitian ini adalah untuk menganalisis pengaruh penggunaan sistem isolasi dasar berupa High Damping Rubber Bearing pada periode dan gaya geser dasar  struktur beton bertulang. Objek penelitian adalah bangunan hotel 15 lantai dengan ketinggian 62,9 m. Penelitian diawali dengan pemodelan struktur menggunakan aplikasi ETABS v2016 sehingga didapatkan periode dan gaya geser dasar struktur fixbase. Tahap selanjutnya memberikan gaya pada model struktur dengan isolasi dasar High Dumper Rubber Bearing sehingga didapatkan periode dan gaya geser dasar struktur dengan base isolator. Hasil analisis pada struktur fixbase didapatkan periode sebesar 4,212 detik, dengan gaya geser dasar didapatkan sebesar 1470,725 ton. Sedangkan hasil analisis pada struktur dengan base isolator didapatkan periode sebesar 5,500 detik, dengan gaya geser dasar didapatkan sebesar 1286,071 ton. Maka dapat disimpulkan bahwa pada struktur dengan base isolator terjadi peningkatan periode sebesar 30,58 %, sedangkan gaya geser dasar terjadi penurunan 12,56 %.


Author(s):  
Jun-Ping Pu ◽  
C. S. Tsai ◽  
Jian-Fa Huang ◽  
Bo-Jen Chen ◽  
Yao-Min Fang

In recent years, many studies on base isolation strategies and devices have been developed and applied in U. S. A., Europe, Japan, and New Zealand. The high damping rubber bearing belongs to one kind of the earthquake-proof ideas of base isolation technologies. The installation of high damping rubber bearings can lengthen the natural period of a building and simultaneously reduce the earthquake-induced energy trying to impart to the building. The objective of this paper is to investigate the base isolation effect of high damping rubber bearings. The uniaxial, biaxial, and triaxial shaking table tests were performed to study the seismic behavior of a 0.4-scale three-story isolated steel structure in the National Center for Research on Earthquake Engineering in Taiwan. The experimental and analytical results show that the nonlinear mechanical characteristics of the high damping rubber bearings can be reasonably simulated.


2014 ◽  
Vol 7 (6) ◽  
pp. 1141-1169
Author(s):  
Patrick L.Y. Tiong ◽  
Azlan Adnan ◽  
Ahmad B.A. Rahman ◽  
Abdul K. Mirasa

2012 ◽  
Vol 234 ◽  
pp. 90-95 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present paper two different base isolation systems, designed and verified according to the european seismic code (EC2 and EC8), are compared for evaluating the behaviour of a base isolated building, highly irregular in plan, in presence of a seismic excitation. The devices adopted for realizing the different base isolation systems are the High Damping Rubber Bearing (HDRB) and the Lead Rubber Bearing (LRB) both of them actuated in parallel with a Friction Slider (FS). A dynamic nonlinear analysis for a three-dimensional base isolated structure has been performed. Recorded accelerograms for bi-directional ground motions, compatible with the reference elastic response spectrum for each limit state have been used for a more realistic evaluation of the seismic response of the structure and a more realistic comparative analysis between the base isolated structure with the different considered base isolation systems and the traditional fixed base structure.


Sign in / Sign up

Export Citation Format

Share Document