Retaining Wall Deflection

2021 ◽  
pp. 99-171
Author(s):  
Wengang Zhang ◽  
Hanlong Liu
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Bo Li ◽  
Cangqin Jia ◽  
Guihe Wang ◽  
Jun Ren ◽  
Gaofeng Lu ◽  
...  

Based on the Yongdingmen Station of Beijing Metro, the underwater excavation method for deep foundation pit was introduced. This study constructed a numerical analysis model to analyze the performance of surface settlement and lateral wall deflection in the process of underwater excavation. Results showed that this method was better to control the surface settlement and lateral wall deflection compared with other dewatering excavations. In detail, most of the surface settlement was caused during the dry excavation stage and dewatering excavation stage while the deflection caused by underwater excavation only accounted for about 10% of the total settlement. Besides, the maximum settlement occurred 0.25∼0.5 H e behind the retaining wall and the value was 0.04% H e . Similar to the result of the surface settlement, most of the lateral wall deflection had been completed before the underwater excavation, which only caused about 7% of the total deflection. The maximum wall deflection and its location were approximately 0.06% H e and 0.5 H e , respectively. Moreover, a series of 3D numerical analyses were studied on the design parameters of the underwater excavation method. This study can be used as a reference for general performance and structural design of foundation pits with underwater excavation.


2011 ◽  
Vol 250-253 ◽  
pp. 2276-2280
Author(s):  
Xue Chan Zhang ◽  
Xiao Nan Gong

It is common to have a foundation pit accident, when failing to deal with the effect of confined water. In order to avoid such accidents, the Jiangnan launching shaft of Qingchun Road River-Crossing Tunnel in Hangzhou was investigated. According to the analysis of on-site monitoring data of wall deflection, settlement, and strut load, some conclusion can be drawn. Firstly, the wall deflection is closely related to the plane size of the foundation pit, and through strengthening the stiffness of the central support, the wall deflection can be greatly controlled. Secondly, the maximum settlement point is 0.5 times depth of the excavation away from retaining wall. Finally, load in the first level strut gradually decreased during the construction, and even can turn to be tensile force.


2007 ◽  
Vol 47 (4) ◽  
pp. 685-699 ◽  
Author(s):  
Naoyuki Iwata ◽  
Teruo Nakai ◽  
Feng Zhang ◽  
Taisuke Inoue ◽  
Hideki Takei

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Kazuki Maehara ◽  
Akihiro Hamanaka ◽  
Takashi Sasaoka ◽  
Hideki Shimada ◽  
Seiya Sakuma

The demand for specific earth retaining wall methods is increasing along with the advancement and overcrowding of underground space use such as the presence of adjacent structures in an urban area. To cope with this, the method named earth stepped-twin retaining wall is increasingly being applied. However, there is a concern about the workplace if the earth pressure causes a heaving and pressing phenomenon from both ends of the retaining wall in the earth stepped-twin retaining wall. Therefore, we proposed the application of an anchor method that contains the inner and outer walls by using numerical simulation. The effects of the difference in soil properties, the horizontal distance between the outer and inner walls, and the depth of the outer wall embedment on the anchor were investigated. The results of this study show that the wall deflection of the inner wall could improve by adopting the anchor support. Besides, it was found that the inner wall can be efficiently suppressed by adopting the hybrid system with anchors and struts according to the soil properties, horizontal distance, and the depth of the outer wall.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lanting Wu ◽  
Jianping Sun ◽  
Yuqiang Tong

Deep excavation supported by vertical retaining walls together with strutting system is commonly used in Singapore for the construction of underground infrastructure. In this paper, a series of numerical scenarios simulated by PLAXIS software are carried out to study the influence of different design parameters such as pre-auger loosening effect, the embedded depth of retaining wall into the stiff soil layer, and the elastic modulus of the ground improvement layer on excavation design especially on strut force, retaining wall deflection, and bending moment. The results show that there is high risk if only a single set of parameters are used as input to predict the performance of the retaining system. Sensitivity analysis shall be carried out to evaluate the effects of these parameter variations within a reasonable range on strut force, retaining wall deflection, and bending moment.


2021 ◽  
Vol 7 (3) ◽  
pp. 253
Author(s):  
Anthonius Steven Sutanto ◽  
Paulus Pramono Rahardjo ◽  
Aswin Lim

Pre-stressed ground anchor systems or tieback systems are commonly used at wide and irregular-shaped excavations, with the advantage of lower cost and ease of construction compared to the braced excavations, but they come with the drawback on permits for excavations near buildings and tunnels. Research on tieback systems in sands was generally conducted. However, the studies on the correlation between the retaining wall deflection and pre-stress force are few. The objectives of this paper are to study the influence of pre-stress force, depth of excavation, wall embedment length, and soil shear strength that is represented by soil friction angle on the deflection and soil pressure acting on the retaining wall. The parametric study was conducted on an excavation in sand using the finite element method with the Hardening soil model. The results showed that a 50 kN/m increase in pre-stress force reduced the wall deflection on top of the wall by 0.005–0.083% of excavation depth. However, the pre-stressing influence in reducing wall deflection at excavations became less significant along with the sand density increase due to higher friction angle contribution to excavation stability. Moreover, the pre-stress force needed for stabilization of the wall with long embedment length is smaller than those on the wall with shorter embedment length, since the embedment length increase of 0.25 times of excavation depth reduces wall top deflection by 0.002–0.095% of excavation depth. Also, the increase of soil density reduces the need for wall embedment length, so at dense sand, the embedment length of 0.5 times of excavation depth is sufficient to support the excavation.


Checking and calculating the stability of retaining walls and deep excavation are required in the design and construction of subterranean structures, particularly the DW500 reinforced concrete Wall-Plate. This is one of the most significant approaches to preventing landslides and settlement for buildings in the immediate vicinity. In fact, calculating and forecasting the DW500 retainer wall's stability and determining the influent area can provide a variety of options for reducing reinforced frame parts (retaining wall and shoring). This technology is now being explored and used for the most realistic structures in Vietnam, particularly in Ho Chi Minh City. This article uses the finite element technique (FEM –Plaxis 2D-2019) to calculate the lateral displacements, shoring, and outer foundation for the DW500 retaining wall.


2017 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Arwan Apriyono ◽  
Sumiyanto Sumiyanto ◽  
Nanang Gunawan Wariyatno

Gunung Tugel is an area that located Patikraja Region, Southern Banyumas. Thetopography of the area is mostly mountainous with a slope that varies from flat to steep. Thiscondition makes to many areas of this region potentially landslide. In 2015, a landslideoccurred in Jalan Gunung Tugel. The Landslide occurred along 70 meters on the half of theroad and causing traffic Patikraja-Purwokerto disturbed. To repair the damage of the road andavoid further landslides, necessary to analyze slope stability. This study is to analyze landslidereinforcement that occurred at Gunung Tugel and divides into 3 step. The first step is fieldinvestigation to determine the condition of the location and dimensions of landslides. Thesecond step is to know the soil parameters and analyzes data were obtained from the field. Andthe final step is analyzed of the landslide reinforcement by using data obtained from thepreceding step. In this research, will be applied three variations of reinforcement i.e. retainingwall, pile foundation and combine both of pile foundations and retaining wall. Slope stabilityanalysis was conducted using limit equilibrium method. Based on the analysis conducted onthe three variations reinforcement, combine both of pile foundations and retaining wall morerecommended. Application of and combine both of pile foundations and retaining wall is themost realistic option in consideration of ease of implementation at the field. From thecalculations have been done, in order to achieve stable conditions need retaining wall withdimensions of 2 meters high with 2,5 meters of width. DPT is supported by two piles of eachcross-section with 0.3 meters of diameter along 10 meters with 1-meter in space. Abstrak: Gunung Tugel adalah salah satu daerah yang terletak di Kecamatan PatikrajaKabupaten Banyumas bagian selatan. Kondisi topografi daerah tersebut sebagian besar berupapegunungan dengan kemiringan yang bervariasi dari landai sampai curam. Hal inimenyebabkan banyak daerah di wilayah Gunung Tugel yang berpotensi terjadi bencana tanahlongsor. Pada tahun 2015, peristiwa longsor kembali terjadi di ruas Jalan Gunung Tugel.Kelongsoran yang terjadi sepanjang 70 meter pada separuh badan jalan tersebut menyebabkanarus lalu lintas patikraja-purwokerto menjadi terganggu. Untuk memperbaiki kerusakan jalandan mencegah kelongsoran kembali, diperlukan analisis perkuatan tanah terhadap lerengtersebut. Studi analisis penanggulangan kelongsoran jalan yang terjadi di Gunung Tugel inidilakukan dengan tiga tahapan. Tahapan pertama adalah investigasi lapangan untukmengetahui kondisi lokasi dan dimensi longsor serta mengambil sampel tanah di lapangan.Tahap kedua adalah melakukan pengujian parameter tanah dan analisis data yang diperolehdari lapangan. Tahapan yang terakhir adalah analisis penanggulangan longsor denganmenggunakan data yang diperoleh dari tahapan sebelumnya. Pada penelitan ini, akanditerapkan tiga variasi perkuatan lereng yaitu dinding penahan tanah (DPT), turap dan DPTyang dikombinasikan dengan pondasi tiang. Analisis stabilitas lereng dilakukan dengan metodekeseimbangan batas. Berdasarkan hasil analisis yang dilakukan terhadap ketiga variasiperkuatan, DPT dengan kombinasi tiang pancang lebih direkomendasikan. Penerapan DPTyang dikombinasikan dengan minipile merupakan pilihan yang paling realistis denganpertimbangan tingkat kemudahan pelaksanaan di lapangan. Dari perhitungan yang telahdilakukan, untuk mencapai kondisi stabil diperlukan DPT dengan dimensi tinggi 2 meterdengan lebar bawah 2,5 meter. DPT tersebut ditopang oleh dua tiang tiap penampangmelintang dengan diameter 0,3 meter sepanjang 10 meter dengan jarak antar tiang 1 meter.kata kunci: tanah longsor, perkuatan tanah, metode keseimbangan batas


2016 ◽  
Vol 12 (4) ◽  
Author(s):  
Ari Sandyavitri

This paper objectives are to; (i) identification of risky slopes (within 4 Provinces in Sumatra including Provinces of Riau, West Sumatra, Jambi and South Sumatra encompassing 840 kms of the “Jalan Lintas Sumatra” highway) based on Rockfall Hazard Rating Systems (RHRS) method; (ii) developing alternatives to stabilize slope hazards, and (iii) selecting appropriate slopes stabilization techniques based on both proactive approach and value engineering one. Based on the Rockfall Hazard Rating Systems (RHRS) method, it was identified 109 steep slopes prone to failure within this highway section. Approximately, 15 slopes were identified as potential high-risk slopes (RHRS scores were calculated >200 points). Based on the proactive approach, seven riskiest slopes ware identified. The preferred stabilization alternatives to remedy most of these slopes are suggested as follow; either (i) a combination of retaining wall and drainage, or (ii) gabion structure and drainage. However, different approaches may yield different results, there are at least 2 main consideration in prioritizing slope stabilization; (i) based on the riskiest slopes, and(ii) the least expensive stabilization alternatives.


Sign in / Sign up

Export Citation Format

Share Document