scholarly journals New Regularization Models for Image Denoising with a Spatially Dependent Regularization Parameter

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Tian-Hui Ma ◽  
Ting-Zhu Huang ◽  
Xi-Le Zhao

We consider simultaneously estimating the restored image and the spatially dependent regularization parameter which mutually benefit from each other. Based on this idea, we refresh two well-known image denoising models: the LLT model proposed by Lysaker et al. (2003) and the hybrid model proposed by Li et al. (2007). The resulting models have the advantage of better preserving image regions containing textures and fine details while still sufficiently smoothing homogeneous features. To efficiently solve the proposed models, we consider an alternating minimization scheme to resolve the original nonconvex problem into two strictly convex ones. Preliminary convergence properties are also presented. Numerical experiments are reported to demonstrate the effectiveness of the proposed models and the efficiency of our numerical scheme.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Sören Bartels ◽  
Nico Weber

<p style='text-indent:20px;'>In this paper, we focus on learning optimal parameters for PDE-based image denoising and decomposition models. First, we learn the regularization parameter and the differential operator for gray-scale image denoising using the fractional Laplacian in combination with a bilevel optimization problem. In our setting the fractional Laplacian allows the use of Fourier transform, which enables the optimization of the denoising operator. We prove stable and explainable results as an advantage in comparison to machine learning approaches. The numerical experiments correlate with our theoretical model settings and show a reduction of computing time in contrast to the Rudin-Osher-Fatemi model. Second, we introduce a new regularized image decomposition model with the fractional Laplacian and the Riesz potential. We provide an explicit formula for the unique solution and the numerical experiments illustrate the efficiency.</p>


2006 ◽  
Vol 16 (02) ◽  
pp. 211-231 ◽  
Author(s):  
ALI I. NESLITURK

A stabilizing subgrid which consists of a single additional node in each triangular element is analyzed by solving the convection–diffusion problem, especially in the case of small diffusion. The choice of the location of the subgrid node is based on minimizing the residual of a local problem inside each element. We study convergence properties of the method under consideration and its connection with previously suggested stabilizing subgrids. We prove that the standard Galerkin finite element solution on augmented grid produces a discrete solution that satisfy the same a priori error estimates that are typically obtained with SUPG and RFB methods. Some numerical experiments that confirm the theoretical findings are also presented.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 33568-33582 ◽  
Author(s):  
Na Wang ◽  
Yu Shang ◽  
Yang Chen ◽  
Min Yang ◽  
Quan Zhang ◽  
...  

Author(s):  
V. Prasath

A well-posed multiscale regularization scheme for digital image denoisingWe propose an edge adaptive digital image denoising and restoration scheme based on space dependent regularization. Traditional gradient based schemes use an edge map computed from gradients alone to drive the regularization. This may lead to the oversmoothing of the input image, and noise along edges can be amplified. To avoid these drawbacks, we make use of a multiscale descriptor given by a contextual edge detector obtained from local variances. Using a smooth transition from the computed edges, the proposed scheme removes noise in flat regions and preserves edges without oscillations. By incorporating a space dependent adaptive regularization parameter, image smoothing is driven along probable edges and not across them. The well-posedness of the corresponding minimization problem is proved in the space of functions of bounded variation. The corresponding gradient descent scheme is implemented and further numerical results illustrate the advantages of using the adaptive parameter in the regularization scheme. Compared with similar edge preserving regularization schemes, the proposed adaptive weight based scheme provides a better multiscale edge map, which in turn produces better restoration.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Yu Du Han ◽  
Jae Heon Yun

We first propose a restarted homotopy perturbation method (RHPM) for solving a nonlinear PDE problem which repeats HPM process by computing only the first few terms instead of computing infinite terms, and then we present an application of RHPM to TV- (Total Variation-) based image denoising problem. The main difficulty in applying RHPM to the nonlinear denoising problem is settled by using binomial series techniques. We also provide finite difference schemes for numerical implementation of RHPM. Lastly, numerical experiments for several test images are carried out to demonstrate the feasibility, efficiency, and reliability of RHPM by comparing the performance of RHPM with that of existing TM and recently proposed RHAM methods.


2014 ◽  
Vol 513-517 ◽  
pp. 3607-3611
Author(s):  
Huan An Xu ◽  
Guo Hua Peng ◽  
Zhe Liu

A novel mutiscale and directionally adaptive image transform called contour based directionlet tansform is presented. Directionlet transform (DT) has shown its charming performance in image processing, but it has scrambled frequencies. Laplacian Pyramid is employed here to separate the low frequencies before applying DT for avoiding the drawback. And an adaptive threshold algorithm is proposed for denoising. Numerical experiments are performed to assess the applicability of the proposed method. The obtained results show that the proposed scheme outperforms Wavelet and Directionlet transforms in terms of numerical and perceptual quality.


Author(s):  
Fatemeh Beik ◽  
Salman Ahmadi-Asl

Recently, some research has been devoted to finding the explicit forms of the η-Hermitian and η-anti-Hermitian solutions of several kinds of quaternion matrix equations and their associated least-squares problems in the literature. Although exploiting iterative algorithms is superior than utilizing the explicit forms in application, hitherto, an iterative approach has not been offered for finding η-(anti)-Hermitian solutions of quaternion matrix equations. The current paper deals with applying an efficient iterative manner for determining η-Hermitian and η-anti-Hermitian least-squares solutions corresponding to the quaternion matrix equation AXB + CY D = E. More precisely, first, this paper establishes some properties of the η-Hermitian and η-anti-Hermitian matrices. These properties allow for the demonstration of how the well-known conjugate gradient least- squares (CGLS) method can be developed for solving the mentioned problem over the η-Hermitian and η-anti-Hermitian matrices. In addition, the convergence properties of the proposed algorithm are discussed with details. In the circumstance that the coefficient matrices are ill-conditioned, it is suggested to use a preconditioner for accelerating the convergence behavior of the algorithm. Numerical experiments are reported to reveal the validity of the elaborated results and feasibility of the proposed iterative algorithm and its preconditioned version.


2011 ◽  
Vol 21 (06) ◽  
pp. 1291-1316 ◽  
Author(s):  
GUILLAUME CARLIER ◽  
MYRIAM COMTE ◽  
IOAN IONESCU ◽  
GABRIEL PEYRÉ

This paper proposes a numerical scheme to approximate the solution of (vectorial) limit load problems. The method makes use of a strictly convex perturbation of the problem, which corresponds to a projection of the deformation field under bounded deformation and incompressibility constraints. The discretized formulation of this perturbation converges to the solution of the original landslide problem when the amplitude of the perturbation tends to zero. The projection is computed numerically with a multi-step gradient descent on the dual formulation of the problem.


2012 ◽  
Vol 17 (2) ◽  
pp. 227-244 ◽  
Author(s):  
Natalia Boal ◽  
Francisco Jos´e Gaspar ◽  
Francisco Lisbona ◽  
Petr Vabishchevich

This paper deals with the numerical solution of a two-dimensional thermoporoelasticity problem using a finite-difference scheme. Two issues are discussed: stability and convergence in discrete energy norms of the finite-difference scheme are proved, and secondly, a distributive smoother is examined in order to find a robust and efficient multigrid solver for the corresponding system of equations. Numerical experiments confirm the convergence properties of the proposed scheme, as well as fast multigrid convergence.


Sign in / Sign up

Export Citation Format

Share Document