bdelloid rotifers
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 27)

H-INDEX

24
(FIVE YEARS 1)

Genetics ◽  
2021 ◽  
Author(s):  
Veronika N Laine ◽  
Timothy Sackton ◽  
Matthew Meselson

Abstract Bdelloid rotifers, common freshwater invertebrates of ancient origin and worldwide distribution have long been thought to be entirely asexual, being the principal exception to the view that in eukaryotes the loss of sex leads to early extinction. That bdelloids are facultatively sexual is shown by a study of allele sharing within a group of closely related bdelloids of the species Macrotrachella quadricornifera, supporting the view that sexual reproduction is essential for long-term success in all eukaryotes.


2021 ◽  
Author(s):  
Reuben W Nowell ◽  
Timothy G Barraclough ◽  
Christopher G Wilson

Obligately asexual lineages are typically rare and short-lived. According to one hypothesis, they adapt too slowly to withstand relentlessly coevolving pathogens. Bdelloid rotifers seem to have avoided this fate, by enduring millions of years without males or sex. We investigated whether bdelloids' unusual capacity to acquire non-metazoan genes horizontally has enhanced their resistance to pathogens. We found that horizontally transferred genes are three times more likely than native genes to be upregulated in response to a natural fungal pathogen. This enrichment was twofold stronger than that elicited by a physical stressor (desiccation), and the genes showed little overlap. Among hundreds of upregulated non-metazoan genes were RNA ligases putatively involved in resisting fungal toxins and glucanases predicted to bind to fungal cell walls, acquired from bacteria. Our results provide evidence that bdelloids mitigate a predicted challenge of long-term asexuality in part through their ability to acquire and deploy so many foreign genes.


Hydrobiologia ◽  
2021 ◽  
Vol 848 (20) ◽  
pp. 4903-4918
Author(s):  
Rapeepan Jaturapruek ◽  
Diego Fontaneto ◽  
Stefano Mammola ◽  
Supiyanit Maiphae

2021 ◽  
Author(s):  
Fernando Rodriguez ◽  
Irina Yushenova ◽  
Daniel DiCorpo ◽  
Irina Arkhipova

Abstract In eukaryotes, 5-methylcytosine is the predominant DNA base modification, followed by N6-methyladenine. However, N4-methylcytosine (4mC) is confined to bacteria. Here we report that 4mC can serve as an epigenetic mark in eukaryotes. Bdelloid rotifers, freshwater invertebrates with transposon-poor genomes that are rich in foreign genes, lack C5-methyltransferases but encode an amino-methyltransferase, N4CMT, captured from bacteria >60 Mya. N4CMT introduces 4mC into DNA, and its chromodomain shapes the "histone-read-DNA-write" architecture together with a "DNA-read-histone-write" SETDB1/eggless H3K9me3 histone methyltransferase variant preferentially binding 4mC-DNA, to maintain 4mC and silent chromatin at transposons and tandem repeats. Our results bring the third base modification into the eukaryotic repertoire, demonstrate how non-native DNA methyl groups can reshape complex epigenetic systems to suppress transposon proliferation, and establish horizontal gene transfer as the source of regulatory innovation in eukaryotes.


Open Biology ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 200413
Author(s):  
Yuichiro Hara ◽  
Reira Shibahara ◽  
Koyuki Kondo ◽  
Wataru Abe ◽  
Takekazu Kunieda

Trehalose is a versatile non-reducing sugar. In some animal groups possessing its intrinsic production machinery, it is used as a potent protectant against environmental stresses, as well as blood sugar. However, the trehalose biosynthesis genes remain unidentified in the large majority of metazoan phyla, including vertebrates. To uncover the evolutionary history of trehalose production machinery in metazoans, we scrutinized the available genome resources and identified bifunctional trehalose-6-phosphate synthase-trehalose-6-phosphate phosphatase (TPS–TPP) genes in various taxa. The scan included our newly sequenced genome assembly of a desiccation-tolerant tardigrade Paramacrobiotus sp. TYO, revealing that this species retains TPS–TPP genes activated upon desiccation. Phylogenetic analyses identified a monophyletic group of the many of the metazoan TPS–TPP genes, namely ‘pan-metazoan’ genes, that were acquired in the early ancestors of metazoans. Furthermore, coordination of our results with the previous horizontal gene transfer studies illuminated that the two tardigrade lineages, nematodes and bdelloid rotifers, all of which include desiccation-tolerant species, independently acquired the TPS–TPP homologues via horizontal transfer accompanied with loss of the ‘pan-metazoan’ genes. Our results indicate that the parallel evolution of trehalose synthesis via recurrent loss and horizontal transfer of the biosynthesis genes resulted in the acquisition and/or augmentation of anhydrobiotic lives in animals.


2021 ◽  
Author(s):  
Zeyneb Vildan Cakil ◽  
Giuseppe Garlasché ◽  
Nataliia Iakovenko ◽  
Andrea Di Cesare ◽  
Ester M. Eckert ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Reuben W Nowell ◽  
Christopher G Wilson ◽  
Pedro Almeida ◽  
Philipp H Schiffer ◽  
Diego Fontaneto ◽  
...  

Transposable elements (TEs) are selfish genomic parasites whose ability to spread autonomously is facilitated by sexual reproduction in their hosts. If hosts become obligately asexual, TE frequencies and dynamics are predicted to change dramatically, but the long-term outcome is unclear. Here, we test current theory using whole-genome sequence data from eight species of bdelloid rotifers, a class of invertebrates in which males are thus far unknown. Contrary to expectations, we find a variety of active TEs in bdelloid genomes, at an overall frequency within the range seen in sexual species. We find no evidence that TEs are spread by cryptic recombination or restrained by unusual DNA repair mechanisms. Instead, we find that that TE content evolves relatively slowly in bdelloids and that gene families involved in RNAi-mediated TE suppression have undergone significant expansion, which might mitigate the deleterious effects of active TEs and compensate for the consequences of long-term asexuality.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Olga A. Vakhrusheva ◽  
Elena A. Mnatsakanova ◽  
Yan R. Galimov ◽  
Tatiana V. Neretina ◽  
Evgeny S. Gerasimov ◽  
...  

AbstractSexual reproduction is almost ubiquitous among extant eukaryotes. As most asexual lineages are short-lived, abandoning sex is commonly regarded as an evolutionary dead end. Still, putative anciently asexual lineages challenge this view. One of the most striking examples are bdelloid rotifers, microscopic freshwater invertebrates believed to have completely abandoned sexual reproduction tens of Myr ago. Here, we compare whole genomes of 11 wild-caught individuals of the bdelloid rotifer Adineta vaga and present evidence that some patterns in its genetic variation are incompatible with strict clonality and lack of genetic exchange. These patterns include genotype proportions close to Hardy-Weinberg expectations within loci, lack of linkage disequilibrium between distant loci, incongruent haplotype phylogenies across the genome, and evidence for hybridization between divergent lineages. Analysis of triallelic sites independently corroborates these findings. Our results provide evidence for interindividual genetic exchange and recombination in A. vaga, a species previously thought to be anciently asexual.


Sign in / Sign up

Export Citation Format

Share Document