statistical decay
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Akira Ohnishi ◽  
Chikako Ishizuka ◽  
Kohsuke Tsubakihara ◽  
Yuichi Hirata

Abstract We investigate double $\Lambda$ hyperfragment formation from the statistical decay of double $\Lambda$ compound nuclei produced in the $\Xi^-$ absorption at rest in the light nuclei $^{12}\mathrm{C}$, $^{14}\mathrm{N}$, and $^{16}\mathrm{O}$. We examine the target and the $\Lambda\Lambda$ bond energy dependence of the double $\Lambda$ hyperfragment formation probabilities, especially of those double hypernuclei observed in experiments. For the $^{12}\mathrm{C}$ ($^{14}\mathrm{N}$) target, the formation probabilities of $^{\,\;\;6}_{\Lambda\Lambda}\mathrm{He}$ and $^{\;10}_{\Lambda\Lambda}\mathrm{Be}$ ($^{\;13}_{\Lambda\Lambda}\mathrm{B}$) are found to be reasonably large as they are observed in the KEK-E373 (KEK-E176) experiment. By comparison, for the $^{16}\mathrm{O}$ target, the formation probability of $^{\;11}_{\Lambda\Lambda}\mathrm{Be}$ is calculated to be small with $\Delta B_{\Lambda\Lambda}$ consistent with the Nagara event. We also evaluate the formation probability of ${}^{\,\;\;5}_{\Lambda\Lambda}\mathrm{H}$ from a $\Xi^-$–${}^{6}\mathrm{He}$ bound state, ${}^{7}_{\Xi}\mathrm{H}$.


2020 ◽  
Vol 239 ◽  
pp. 03005
Author(s):  
Shin Okumura ◽  
Toshihiko Kawano ◽  
Satoshi Chiba

We performed the calculations of de-excitation of the primary fission fragments by the Hauser-Feshbach statistical decay followed by the β decay of de-excited fission products. We used the primary fission fragment mass distributions YP(A), total kinetic energy TKE(A), and its width σTKE(A) as input, which were calculated with the Langevin model using macroscopic-microscopic models of the potential energy surface. The prompt neutron multiplicity v̅ and the independent fission product yield (FPY) YI(Z, A, M) and cumulative FPY YC(Z, A, M) are calculated by the Hauser-Feshbach statistical decay and β decay calculations, respectively. The calculated v̅ was overestimated approximately 17% compared to the evaluated data. The decay heats from β and γ were in accordance with the experimental results. The β delayed neutrons yieild was also overestimated.


2019 ◽  
Vol 211 ◽  
pp. 04005 ◽  
Author(s):  
Shin Okumura ◽  
Toshihiko Kawano ◽  
Satoshi Chiba

We demonstrate the neutron emission and fission product yield calculations using the Hauser–Feshbach Fission Fragment Decay (HF3D) model and β decay. The HF3D model calculates the statistical decay of more than 500 primary fission fragment pairs formed by the neutron induced fission of 235U. In order to calculate the prompt neutron and photon emissions, the primary fission fragment distributions, i.e. mass, charge, excitation energy, spin and parity are deterministically generated and numerically integrated for all fission fragments. The calculated prompt neutron multiplicities, independent fission product yield are fully consistent each other. We combine the β-decay and the summation calculations with the HF3D model calculation to obtain the cumulative fission product yield, decay heat and delayed neutron yield. The calculated fission observables are compared with available experimental data.


2018 ◽  
Vol 169 ◽  
pp. 00006 ◽  
Author(s):  
Patrick Jaffke ◽  
Peter Möller ◽  
Ionel Stetcu ◽  
Patrick Talou ◽  
Christelle Schmitt

We implement fission fragment yields, calculated using Brownian shape-motion on a macroscopic-microscopic potential energy surface in six dimensions, into the Hauser-Feshbach statistical decay code CGMF. This combination allows us to test the impact of utilizing theoretically-calculated fission fragment yields on the subsequent prompt neutron and γ-ray emission. We draw connections between the fragment yields and the total kinetic energy TKE of the fission fragments and demonstrate that the use of calculated yields can introduce a difference in the 〈TKE〉 and, thus, the prompt neutron multiplicity v, as compared with experimental fragment yields. We deduce the uncertainty on the 〈TKE〉 and v from this procedure and identify possible applications.


2018 ◽  
Vol 776 ◽  
pp. 163-167 ◽  
Author(s):  
Tathagata Banerjee ◽  
S. Nath ◽  
Santanu Pal

2017 ◽  
Vol 95 (4) ◽  
Author(s):  
B. V. Kheswa ◽  
M. Wiedeking ◽  
J. A. Brown ◽  
A. C. Larsen ◽  
S. Goriely ◽  
...  

2017 ◽  
Vol 146 ◽  
pp. 05009 ◽  
Author(s):  
Tamás Belgya ◽  
László Szentmiklósi ◽  
Ralph Massarczyk ◽  
Ronald Schwengner ◽  
Arnd R. Junghans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document