scholarly journals Thermodynamics of galaxy clusters in modified Newtonian potential

2021 ◽  
Author(s):  
Abdul W. Khanday ◽  
Sudhaker Upadhyay ◽  
Prince A. Ganai

Abstract We study the thermodynamics of galaxy clusters in a modified Newtonian potential motivated by a general solution to Newton’s “sphere-point” equivalence theorem. We obtain the N particle partition function by evaluating the configurational integral while accounting for the extended nature of galaxies (via the inclusion of the softening parameter ε into the potential energy function). This softening parameter takes care of the galaxy-halos whose effect on structuring the shape of the galactic disc has been found recently. The spatial distribution of the particles (galaxies) is also studied in this framework. A comparison of the new clustering parameter b + to the original clustering parameters is presented in order to visualize the effect of the modified gravity. We also discuss the possibility of system symmetry breaking via the behavior of the specific heat as a function of temperature.

1992 ◽  
Vol 9 ◽  
pp. 695-696
Author(s):  
H. K. C. Yee ◽  
E. Ellingson

We have carried out a number of imaging surveys of fields around quasars to study their global environments (e.g. Yee and Green 1987, Ellingson, Yee and Green 1991). The richness of the galaxy cluster environment of each quasar was determined using the galaxy-quasar spatial covariance amplitude, a quantity which is normalized for the expected luminosity and spatial distribution of galaxies (Longair and Seldner 1978, Yee and Green 1987). We find that ~40% of the brightest radio-loud quasars inhabit rich clusters of galaxies (Abell class 1 or higher) at z≳0.5 whereas only fainter AGN inhabit clusters at more recent epochs (Figure 1). This can be understood if quasars in rich clusters evolve much faster than those in poor environments.


Author(s):  
Andrea Afruni ◽  
Filippo Fraternali ◽  
Gabriele Pezzulli

Abstract The characterization of the large amount of gas residing in the galaxy halos, the so called circumgalactic medium (CGM), is crucial to understand galaxy evolution across cosmic time. We focus here on the the cool (T ∼ 104 K) phase of this medium around star-forming galaxies in the local universe, whose properties and dynamics are poorly understood. We developed semi-analytical parametric models to describe the cool CGM as an outflow of gas clouds from the central galaxy, as a result of supernova explosions in the disc (galactic wind). The cloud motion is driven by the galaxy gravitational pull and by the interactions with the hot (T ∼ 106 K) coronal gas. Through a bayesian analysis, we compare the predictions of our models with the data of the COS-Halos and COS-GASS surveys, which provide accurate kinematic information of the cool CGM around more than 40 low-redshift star-forming galaxies, probing distances up to the galaxy virial radii. Our findings clearly show that a supernova-driven outflow model is not suitable to describe the dynamics of the cool circumgalactic gas. Indeed, to reproduce the data, we need extreme scenarios, with initial outflow velocities and mass loading factors that would lead to unphysically high energy coupling from the supernovae to the gas and with supernova efficiencies largely exceeding unity. This strongly suggests that, since the outflows cannot reproduce most of the cool gas absorbers, the latter are likely the result of cosmological inflow in the outer galaxy halos, in analogy to what we have previously found for early-type galaxies.


2021 ◽  
Vol 503 (3) ◽  
pp. 4309-4319
Author(s):  
Jong Chul Lee ◽  
Ho Seong Hwang ◽  
Hyunmi Song

ABSTRACT To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars, and cluster galaxies from the Sloan Digital Sky Survey (SDSS). With ∼82 000 quasar spectra, we detect 197 Mg ii absorbers in and around the clusters. The detection rate per quasar is 2.7 ± 0.7 times higher inside the clusters than outside the clusters, indicating that Mg ii absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that Mg ii absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30 ± 10 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.


2011 ◽  
Vol 734 (1) ◽  
pp. 3 ◽  
Author(s):  
A. Zenteno ◽  
J. Song ◽  
S. Desai ◽  
R. Armstrong ◽  
J. J. Mohr ◽  
...  

2018 ◽  
Vol 611 ◽  
pp. A50 ◽  
Author(s):  
Konstantinos Migkas ◽  
Thomas H. Reiprich

We introduce a new test to study the cosmological principle with galaxy clusters. Galaxy clusters exhibit a tight correlation between the luminosity and temperature of the X-ray-emitting intracluster medium. While the luminosity measurement depends on cosmological parameters through the luminosity distance, the temperature determination is cosmology-independent. We exploit this property to test the isotropy of the luminosity distance over the full extragalactic sky, through the normalization a of the LX–T scaling relation and the cosmological parameters Ωm and H0. To this end, we use two almost independent galaxy cluster samples: the ASCA Cluster Catalog (ACC) and the XMM Cluster Survey (XCS-DR1). Interestingly enough, these two samples appear to have the same pattern for a with respect to the Galactic longitude. More specifically, we identify one sky region within l ~ (−15°, 90°) (Group A) that shares very different best-fit values for the normalization of the LX–T relation for both ACC and XCS-DR1 samples. We use the Bootstrap and Jackknife methods to assess the statistical significance of these results. We find the deviation of Group A, compared to the rest of the sky in terms of a, to be ~2.7σ for ACC and ~3.1σ for XCS-DR1. This tension is not significantly relieved after excluding possible outliers and is not attributed to different redshift (z), temperature (T), or distributions of observable uncertainties. Moreover, a redshift conversion to the cosmic microwave background (CMB) frame does not have an important impact on our results. Using also the HIFLUGCS sample, we show that a possible excess of cool-core clusters in this region, is not able to explain the obtained deviations. Furthermore, we tested for a dependence of the results on supercluster environment, where the fraction of disturbed clusters might be enhanced, possibly affecting the LX–T relation. We indeed find a trend in the XCS-DR1 sample for supercluster members to be underluminous compared to field clusters. However, the fraction of supercluster members is similar in the different sky regions, so this cannot explain the observed differences, either. Constraining Ωm and H0 via the redshift evolution of LX–T and the luminosity distance via the flux–luminosity conversion, we obtain approximately the same deviation amplitudes as for a. It is interesting that the general observed behavior of Ωm for the sky regions that coincide with the CMB dipole is similar to what was found with other cosmological probes such as supernovae Ia. The reason for this behavior remains to be identified.


1996 ◽  
Vol 169 ◽  
pp. 669-680
Author(s):  
F.D.A. Hartwick

The spatial distribution of the outlying satellites of the Galaxy has been determined by fitting a three dimensional surface to the positions of 10 companion galaxies and 13 distant globular clusters. Both groups show a highly flattened distribution whose minor axes are aligned to within ∼ 5°. The combined group of 23 objects shows a triaxial distribution with semimajor axis extending ∼ 400 kpc. The minor axis is inclined at ∼ 76° to the Galactic poles. There is a suggestion of a nested hierarchy consisting of satellite galaxies, globular clusters, and distant halo field stars, in order of decreasing spatial extension.


2007 ◽  
Vol 16 (12b) ◽  
pp. 2399-2405 ◽  
Author(s):  
FRANCESC FERRER ◽  
TANMAY VACHASPATI

Observations of the Milky Way by the SPI/INTEGRAL satellite have confirmed the presence of a strong 511 keV gamma ray line emission from the bulge, which requires an intense source of positrons in the galactic center. These observations are hard to account for by conventional astrophysical scenarios, whereas other proposals, such as light DM, face stringent constraints from the diffuse gamma ray background. Here we suggest that light superconducting strings could be the source of the observed 511 keV emission. The associated particle physics, at the ~ 1 TeV scale, is within the reach of planned accelerator experiments, while the distinguishing spatial distribution, proportional to the galactic magnetic field, could be mapped by SPI or by future, more sensitive satellite missions.


2021 ◽  
Vol 650 ◽  
pp. A113
Author(s):  
Margot M. Brouwer ◽  
Kyle A. Oman ◽  
Edwin A. Valentijn ◽  
Maciej Bilicki ◽  
Catherine Heymans ◽  
...  

We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter (gbar) with the observed gravitational acceleration (gobs), using weak lensing measurements from the fourth data release of the Kilo-Degree Survey (KiDS-1000). These measurements extend the radial acceleration relation (RAR), traditionally measured using galaxy rotation curves, by 2 decades in gobs into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: modified Newtonian dynamics and Verlinde’s emergent gravity (EG). We find that the measured relation between gobs and gbar agrees well with the MG predictions. In addition, we find a difference of at least 6σ between the RARs of early- and late-type galaxies (split by Sérsic index and u − r colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour, although the EG theory is still limited to spherically symmetric static mass models. The difference might be explained if only the early-type galaxies have significant (Mgas ≈ M⋆) circumgalactic gaseous haloes. The observed behaviour is also expected in Λ-cold dark matter (ΛCDM) models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a ΛCDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys (such as Euclid) will be able to further distinguish between MG and ΛCDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.


Sign in / Sign up

Export Citation Format

Share Document