scholarly journals Evolution of C iv Absorbers. II. Where Does C iv Live?

2022 ◽  
Vol 924 (1) ◽  
pp. 12
Author(s):  
Farhanul Hasan ◽  
Christopher W. Churchill ◽  
Bryson Stemock ◽  
Nikole M. Nielsen ◽  
Glenn G. Kacprzak ◽  
...  

Abstract We use the observed cumulative statistics of C iv absorbers and dark matter halos to infer the distribution of C iv-absorbing gas relative to galaxies at redshifts 0 ≤ z ≤ 5. We compare the cosmic incidence dN/dX of C iv absorber populations and galaxy halos, finding that massive L ≥ L ⋆ halos alone cannot account for all the observed W r ≥ 0.05 Å absorbers. However, the dN/dX of lower-mass halos exceeds that of W r ≥ 0.05 Å absorbers. We also estimate the characteristic gas radius of absorbing structures required for the observed C iv dN/dX, assuming each absorber is associated with a single galaxy halo. The W r ≥ 0.3 Å and W r ≥ 0.6 Å C iv gas radii are ∼30%–70% (∼20%–40%) of the virial radius of L ⋆ (0.1L ⋆) galaxies, and the W r ≥ 0.05 Å gas radius is ∼100%–150% (∼60%–100%) of the virial radius of L ⋆ (0.1L ⋆) galaxies. For stronger absorbers, the gas radius relative to the virial radius rises across Cosmic Noon and falls afterwards, while for weaker absorbers, the relative gas radius declines across Cosmic Noon and then dramatically rises at z < 1. A strong luminosity-dependence of the gas radius implies highly extended C iv envelopes around massive galaxies before Cosmic Noon, while a luminosity-independent gas radius implies highly extended envelopes around dwarf galaxies after Cosmic Noon. From available absorber-galaxy and C iv evolution data, we favor a scenario in which low-mass galaxies enrich the volume around massive galaxies at early epochs and propose that the outer halo gas (>0.5 R v ) was produced primarily in ancient satellite dwarf galaxy outflows, while the inner halo gas (<0.5 R v ) originated from the central galaxy and persists as recycled accreting gas.

Author(s):  
Nelson Caldwell ◽  
Jay Strader ◽  
David J. Sand ◽  
Beth Willman ◽  
Anil C. Seth

AbstractObservations of globular clusters in dwarf galaxies can be used to study a variety of topics, including the structure of dark matter halos and the history of vigorous star formation in low-mass galaxies. We report on the properties of the faint globular cluster (MV ~ −3.4) in the M31 dwarf galaxy Andromeda I. This object adds to the growing population of low-luminosity Local Group galaxies that host single globular clusters.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Beth Willman

The dwarf galaxy companions to the Milky Way are unique cosmological laboratories. With luminosities as low as10−7LMW, they inhabit the lowest mass dark matter halos known to host stars and are presently the most direct tracers of the distribution, mass spectrum, and clustering scale of dark matter. Their resolved stellar populations also facilitate detailed studies of their history and mass content. To fully exploit this potential requires a well-defined census of virtually invisible galaxies to the faintest possible limits and to the largest possible distances. I review the past and present impacts of survey astronomy on the census of Milky Way dwarf galaxy companions and discuss the future of finding ultra-faint dwarf galaxies around the Milky Way and beyond in wide-field survey data.


2018 ◽  
Vol 14 (S344) ◽  
pp. 455-463
Author(s):  
Julio F. Navarro

AbstractThe Lambda Cold Dark Matter (LCDM) paradigm makes specific predictions for the abundance, structure, substructure and clustering of dark matter halos, the sites of galaxy formation. These predictions can be directly tested, in the low-mass halo regime, by dark matter-dominated dwarf galaxies. A number of potential challenges to LCDM have been identified when confronting the expected properties of dwarfs with observation. I review our understanding of a few of these issues, including the “missing satellites” and the “too-big-to-fail” problems, and argue that neither poses an insurmountable challenge to LCDM. Solving these problems requires that most dwarf galaxies inhabit halos of similar mass, and that there is a relatively sharp minimum halo mass threshold to form luminous galaxies. These predictions are eminently falsifiable. In particular, LCDM predicts a large number of “dark” low-mass halos, some of which should have retained enough primordial gas to be detectable in deep 21 cm or Hα surveys. Detecting this predicted population of “mini-halos” would be a major discovery and a resounding success for LCDM on small scales.


2020 ◽  
Vol 492 (4) ◽  
pp. 5218-5225
Author(s):  
Pierre Boldrini ◽  
Yohei Miki ◽  
Alexander Y Wagner ◽  
Roya Mohayaee ◽  
Joseph Silk ◽  
...  

ABSTRACT We performed a series of high-resolution N-body simulations to examine whether dark matter candidates in the form of primordial black holes (PBHs) can solve the cusp–core problem in low-mass dwarf galaxies. If some fraction of the dark matter in low-mass dwarf galaxies consists of PBHs and the rest is cold dark matter, dynamical heating of the cold dark matter by the PBHs induces a cusp-to-core transition in the total dark matter profile. The mechanism works for PBHs in the 25–100 M⊙ mass window, consistent with the Laser Interferometer Gravitational-Wave Observatory (LIGO) detections, but requires a lower limit on the PBH mass fraction of 1 ${{\rm per\ cent}}$ of the total dwarf galaxy dark matter content. The cusp-to-core transition time-scale is between 1 and 8 Gyr. This time-scale is also a constant multiple of the relaxation time between cold dark matter particles and PBHs, which depends on the mass, the mass fraction, and the scale radius of the initial density profile of PBHs. We conclude that dark matter cores occur naturally in haloes composed of cold dark matter and PBHs, without the need to invoke baryonic processes.


1996 ◽  
Vol 171 ◽  
pp. 175-178 ◽  
Author(s):  
A. Burkert

Some dwarf galaxies have HI rotation curves that are completely dominated by a surrounding dark matter (DM) halo (e.g. Carignan & Freeman 1988). These objects represent ideal candidates for an investigation of the density structure of low-mass DM halos as the uncertainties resulting from the subtraction of the visible component are small, even in the innermost regions. Flores & Primack (1994) and Moore (1994) compared the observed DM rotation curves with the profiles, predicted from cosmological cold dark matter (CDM) calculations. They found an interesting discrepancy: whereas the calculations lead to a DM density distribution which diverges as ρ ∼ r−1 in the inner parts, the observed rotation curves indicate shallow DM cores which can be described by an isothermal density profile with finite central density.


2018 ◽  
Vol 14 (S344) ◽  
pp. 17-26
Author(s):  
Laura V. Sales

AbstractWe present a summary of the predictions from numerical simulations to our understanding of dwarf galaxies. It centers the discussion around the Λ Cold Dark Matter scenario (ΛCDM) but discusses also implications for alternative dark matter models. Four key predictions are identified: the abundance of dwarf galaxies, their dark matter content, their relation with environment and the existence of dwarf satellites orbiting dwarf field galaxies. We discuss tensions with observations and identify the most exciting predictions expected from simulations in the future, including i) the existence of “dark galaxies” (dark matter halos without stars), ii) the ability to resolve the structure (size, morphology, dark matter distribution) in dwarfs and iii) the number of ultra-faint satellites around dwarf galaxies. All of these predictions shall inform future observations, not only the faintest galaxies to be discovered within the Local Volume but also distant dwarfs driving galaxy formation in the early universe.


2020 ◽  
Vol 499 (2) ◽  
pp. 2648-2661
Author(s):  
Aaron A Dutton ◽  
Tobias Buck ◽  
Andrea V Macciò ◽  
Keri L Dixon ◽  
Marvin Blank ◽  
...  

ABSTRACT We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the response of cold dark matter (CDM) haloes to baryonic processes. Previous work has shown that the halo response is primarily a function of the ratio between galaxy stellar mass and total virial mass, and the density threshold above which gas is eligible to form stars, n[cm−3]. At low n all simulations in the literature agree that dwarf galaxy haloes are cuspy, but at high n ≳ 100 there is no consensus. We trace halo contraction in dwarf galaxies with n ≳ 100 reported in some previous simulations to insufficient spatial resolution. Provided the adopted star formation threshold is appropriate for the resolution of the simulation, we show that the halo response is remarkably stable for n ≳ 5, up to the highest star formation threshold that we test, n = 500. This free parameter can be calibrated using the observed clustering of young stars. Simulations with low thresholds n ≤ 1 predict clustering that is too weak, while simulations with high star formation thresholds n ≳ 5, are consistent with the observed clustering. Finally, we test the CDM predictions against the circular velocities of nearby dwarf galaxies. Low thresholds predict velocities that are too high, while simulations with n ∼ 10 provide a good match to the observations. We thus conclude that the CDM model provides a good description of the structure of galaxies on kpc scales provided the effects of baryons are properly captured.


2020 ◽  
Vol 497 (3) ◽  
pp. 2786-2810 ◽  
Author(s):  
M Tremmel ◽  
A C Wright ◽  
A M Brooks ◽  
F Munshi ◽  
D Nagai ◽  
...  

ABSTRACT We study the origins of 122 ultradiffuse galaxies (UDGs) in the Romulus c zoom-in cosmological simulation of a galaxy cluster (M200 = 1.15 × 1014 M⊙), one of the only such simulations capable of resolving the evolution and structure of dwarf galaxies (M⋆ &lt; 109 M⊙). We find broad agreement with observed cluster UDGs and predict that they are not separate from the overall cluster dwarf population. UDGs in cluster environments form primarily from dwarf galaxies that experienced early cluster in-fall and subsequent quenching due to ram pressure. The ensuing dimming of these dwarf galaxies due to passive stellar evolution results in a population of very low surface brightness galaxies that are otherwise typical dwarfs. UDGs and non-UDGs alike are affected by tidal interactions with the cluster potential. Tidal stripping of dark matter, as well as mass-loss from stellar evolution, results in the adiabatic expansion of stars, particularly in the lowest mass dwarfs. High-mass dwarf galaxies show signatures of tidal heating while low-mass dwarfs that survive until z = 0 typically have not experienced such impulsive interactions. There is little difference between UDGs and non-UDGs in terms of their dark matter haloes, stellar morphology, colours, and location within the cluster. In most respects cluster UDG and non-UDGs alike are similar to isolated dwarf galaxies, except for the fact that they are typically quenched.


2020 ◽  
Vol 644 ◽  
pp. A91
Author(s):  
Oliver Müller ◽  
Helmut Jerjen

The abundance of satellite dwarf galaxies has long been considered a crucial test for the current model of cosmology leading to the well-known missing satellite problem. Recent advances in simulations and observations have allowed the study of dwarf galaxies around host galaxies in more detail. Using the Dark Energy Camera we surveyed a 72 deg2 area of the nearby Sculptor group, also encompassing the two low-mass Local Volume galaxies NGC 24 and NGC 45 residing behind the group, to search for as yet undetected dwarf galaxies. Apart from the previously known dwarf galaxies we found only two new candidates down to a 3σ surface brightness detection limit of 27.4 r mag arcsec−2. Both systems are in projection close to NGC 24. However, one of these candidates could be an ultra-diffuse galaxy associated with a background galaxy. We compared the number of known dwarf galaxy candidates around NGC 24, NGC 45, and five other well-studied low-mass spiral galaxies (NGC 1156, NGC 2403, NGC 5023, M 33, and the LMC) with predictions from cosmological simulations, and found that for the stellar-to-halo mass models considered, the observed satellite numbers tend to be on the lower end of the expected range. This could mean either that there is an overprediction of luminous subhalos in ΛCDM or that we are missing some of the satellite members due to observational biases.


Sign in / Sign up

Export Citation Format

Share Document