scholarly journals V1 encodes the perceived position of static but not moving objects

2021 ◽  
Author(s):  
Man-Ling Ho ◽  
D. Samuel Schwarzkopf

Brain activity in retinotopic cortex reflects illusory changes in stimulus position. Is this neural signature a general code for apparent position? Here we show that responses in primary visual cortex (V1) are consistent with perception of the Muller-Lyer illusion; however, we found no such signature for another striking illusion, the curveball effect. This demonstrates that V1 does not encode apparent position per se.

2019 ◽  
Author(s):  
Marie Tolkiehn ◽  
Simon R. Schultz

AbstractOrientation tuning in mouse primary visual cortex (V1) has long been reported to have a random or “salt-and-pepper” organisation, lacking the structure found in cats and primates. Laminar in-vivo multi-electrode array recordings here reveal previously elusive structure in the representation of visual patterns in the mouse visual cortex, with temporo-nasally drifting gratings eliciting consistently highest neuronal responses across cortical layers and columns, whilst upward moving gratings reliably evoked the lowest activities. We suggest this bias in direction selectivity to be behaviourally relevant as objects moving into the visual field from the side or behind may pose a predatory threat to the mouse whereas upward moving objects do not. We found furthermore that direction preference and selectivity was affected by stimulus spatial frequency, and that spatial and directional tuning curves showed high signal correlations decreasing with distance between recording sites. In addition, we show that despite this bias in direction selectivity, it is possible to decode stimulus identity and that spatiotemporal features achieve higher accuracy in the decoding task whereas spike count or population counts are sufficient to decode spatial frequencies implying different encoding strategies.Significance statementWe show that temporo-nasally drifting gratings (i.e. opposite the normal visual flow during forward movement) reliably elicit the highest neural activity in mouse primary visual cortex, whereas upward moving gratings reliably evoke the lowest responses. This encoding may be highly behaviourally relevant, as objects approaching from the periphery may pose a threat (e.g. predators), whereas upward moving objects do not. This is a result at odds with the belief that mouse primary visual cortex is randomly organised. Further to this biased representation, we show that direction tuning depends on the underlying spatial frequency and that tuning preference is spatially correlated both across layers and columns and decreases with cortical distance, providing evidence for structural organisation in mouse primary visual cortex.


Science ◽  
2019 ◽  
Vol 363 (6422) ◽  
pp. 64-69 ◽  
Author(s):  
Riccardo Beltramo ◽  
Massimo Scanziani

Visual responses in the cerebral cortex are believed to rely on the geniculate input to the primary visual cortex (V1). Indeed, V1 lesions substantially reduce visual responses throughout the cortex. Visual information enters the cortex also through the superior colliculus (SC), but the function of this input on visual responses in the cortex is less clear. SC lesions affect cortical visual responses less than V1 lesions, and no visual cortical area appears to entirely rely on SC inputs. We show that visual responses in a mouse lateral visual cortical area called the postrhinal cortex are independent of V1 and are abolished upon silencing of the SC. This area outperforms V1 in discriminating moving objects. We thus identify a collicular primary visual cortex that is independent of the geniculo-cortical pathway and is capable of motion discrimination.


NeuroImage ◽  
2003 ◽  
Vol 18 (3) ◽  
pp. 595-609 ◽  
Author(s):  
F. Moradi ◽  
L.C. Liu ◽  
K. Cheng ◽  
R.A. Waggoner ◽  
K. Tanaka ◽  
...  

2018 ◽  
Author(s):  
Adam P. Morris ◽  
Bart Krekelberg

SummaryHumans and other primates rely on eye movements to explore visual scenes and to track moving objects. As a result, the image that is projected onto the retina – and propagated throughout the visual cortical hierarchy – is almost constantly changing and makes little sense without taking into account the momentary direction of gaze. How is this achieved in the visual system? Here we show that in primary visual cortex (V1), the earliest stage of cortical vision, neural representations carry an embedded “eye tracker” that signals the direction of gaze associated with each image. Using chronically implanted multi-electrode arrays, we recorded the activity of neurons in V1 during tasks requiring fast (exploratory) and slow (pursuit) eye movements. Neurons were stimulated with flickering, full-field luminance noise at all times. As in previous studies 1-4, we observed neurons that were sensitive to gaze direction during fixation, despite comparable stimulation of their receptive fields. We trained a decoder to translate neural activity into metric estimates of (stationary) gaze direction. This decoded signal not only tracked the eye accurately during fixation, but also during fast and slow eye movements, even though the decoder had not been exposed to data from these behavioural states. Moreover, this signal lagged the real eye by approximately the time it took for new visual information to travel from the retina to cortex. Using simulations, we show that this V1 eye position signal could be used to take into account the sensory consequences of eye movements and map the fleeting positions of objects on the retina onto their stable position in the world.


2019 ◽  
Author(s):  
Amandine Van Rinsveld ◽  
Mathieu Guillaume ◽  
Peter J. Kohler ◽  
Christine Schiltz ◽  
Wim Gevers ◽  
...  

AbstractThe ability to handle approximate quantities, or number sense, has been recurrently linked to mathematical skills, though the nature of the mechanism allowing to extract numerical information (i.e., numerosity) from environmental stimuli is still debated. A set of objects is indeed not only characterized by its numerosity but also by other features, such as the summed area occupied by the elements, which often covary with numerosity. These intrinsic relations between numerosity and non-numerical magnitudes led some authors to argue that numerosity is not independently processed but extracted through a weighting of continuous magnitudes. This view cannot be properly tested through classic behavioral and neuroimaging approaches due to these intrinsic correlations. The current study used a frequency-tagging EEG approach to separately measure responses to numerosity as well as to continuous magnitudes. We recorded occipital responses to numerosity, total area, and convex hull changes but not to density and dot size. We additionally applied a model predicting primary visual cortex responses to the set of stimuli. The model output was closely aligned with our electrophysiological data, since it predicted discrimination only for numerosity, total area, and convex hull. Our findings thus demonstrate that numerosity can be independently processed at an early stage in the visual cortex, even when completely isolated from other magnitude changes. The similar implicit discrimination for numerosity as for some continuous magnitudes, which correspond to basic visual percepts, shows that both can be extracted independently, hence substantiating the nature of numerosity as a primary feature of the visual scene.


2019 ◽  
Vol 286 (1912) ◽  
pp. 20191910 ◽  
Author(s):  
Liam J. Norman ◽  
Lore Thaler

The functional specializations of cortical sensory areas were traditionally viewed as being tied to specific modalities. A radically different emerging view is that the brain is organized by task rather than sensory modality, but it has not yet been shown that this applies to primary sensory cortices. Here, we report such evidence by showing that primary ‘visual’ cortex can be adapted to map spatial locations of sound in blind humans who regularly perceive space through sound echoes. Specifically, we objectively quantify the similarity between measured stimulus maps for sound eccentricity and predicted stimulus maps for visual eccentricity in primary ‘visual’ cortex (using a probabilistic atlas based on cortical anatomy) to find that stimulus maps for sound in expert echolocators are directly comparable to those for vision in sighted people. Furthermore, the degree of this similarity is positively related with echolocation ability. We also rule out explanations based on top-down modulation of brain activity—e.g. through imagery. This result is clear evidence that task-specific organization can extend even to primary sensory cortices, and in this way is pivotal in our reinterpretation of the functional organization of the human brain.


Author(s):  
Sławomir Kotyra ◽  
Grzegorz M. Wójcik ◽  
Marcin Smolira

AbstractSteady State Visually Evoked Potentials have been known for several decades and they appear in the primary visual cortex of brain as a result of light stimulation of the sense of sight. In this article a simple method for electroencephalographic data acquisition is presented. The system is based on the DSM-51 unit connected to goggles with blinking diodes and Mindset-1000 EEG amplifier with 16 channels. We present self-developed hardware and method of effective synchronization for the light stimulation and brain activity recording.


2017 ◽  
Author(s):  
Shigenori Inagaki ◽  
Masakazu Agetsuma ◽  
Shinya Ohara ◽  
Toshio Iijima ◽  
Tetsuichi Wazawa ◽  
...  

AbstractElectrophysiological field potential dynamics have been widely used to investigate brain functions and related psychiatric disorders. Conversely, however, various technical limitations of conventional recording methods have limited its applicability to freely moving subjects, especially when they are in a group and socially interacting with each other. Here, we propose a new method to overcome these technical limitations by introducing a bioluminescent voltage indicator called LOTUS-V. Using our simple and fiber-free recording method, named “SNIPA,” we succeeded in capturing brain activity in freely-locomotive mice, without the need for complicated instruments. This novel method further allowed us to simultaneously record from multiple independently-locomotive animals that were interacting with one another. Further, we successfully demonstrated that the primary visual cortex was activated during the interaction. This methodology will further facilitate a wide range of studies in neurobiology and psychiatry.


SLEEP ◽  
2021 ◽  
Author(s):  
Christoph Nissen ◽  
Hannah Piosczyk ◽  
Johannes Holz ◽  
Jonathan G Maier ◽  
Lukas Frase ◽  
...  

Abstract Sleep promotes adaptation of behavior and underlying neural plasticity in comparison to active wakefulness. However, the contribution of its two main characteristics, sleep-specific brain activity and reduced stimulus interference, remains unclear. We tested healthy humans on a texture discrimination task, a proxy for neural plasticity in primary visual cortex, in the morning and retested them in the afternoon after a period of daytime sleep, passive waking with maximally reduced interference, or active waking. Sleep restored performance in direct comparison to both passive and active waking, in which deterioration of performance across repeated within-day testing has been linked to synaptic saturation in the primary visual cortex. No difference between passive and active waking was observed. Control experiments indicated that deterioration across wakefulness was retinotopically specific to the trained visual field and not due to unspecific performance differences. The restorative effect of sleep correlated with time spent in NREM sleep and with electroencephalographic slow wave energy, which is thought to reflect renormalization of synaptic strength. The results indicate that sleep is more than a state of reduced stimulus interference, but that sleep-specific brain activity restores performance by actively refining cortical plasticity.


Sign in / Sign up

Export Citation Format

Share Document