lysosomotropic agents
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 5)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Enrico Desideri ◽  
Maria Rosa Ciriolo

AbstractAlteration of lysosomal homeostasis is common in cancer cells, which often feature an enlarged and peripheral distributed lysosomal compartment and the overexpression of cathepsins. These alterations accelerate the production of building blocks for the de novo synthesis of macromolecules and contribute to the degradation of the extracellular matrix, thus contributing to tumor growth and invasion. At the same time, they make lysosomes more fragile and more prone to lysosomal membrane permeabilization, a condition that can cause the release of proteases into the cytosol and the activation of cell death. Therefore, lysosomes represent a weak spot of cancer cells that can be targeted for therapeutic purposes. Here, we identify a novel role of the kinase JNK as keeper of lysosomal stability in hepatocellular carcinoma cells. JNK inhibition reduces the stability of LAMP2A, a lysosomal membrane protein responsible for the stability of the lysosomal membrane, promoting its degradation by the proteasome. LAMP2A decrease enhances the lysosomal damage induced by lysosomotropic agents, ultimately leading to cell death. The effect is cancer-specific, as JNK inhibition does not decrease LAMP2A in non-tumoral liver cells and does not alter their sensitivity to lysosomotropic drugs. Our finding on the new role of JNK as cancer-specific keeper of lysosomal homeostasis lays the ground for future evaluation of the efficacy of the combination of JNK inhibition and lysosomotropic agents as a potential therapeutic strategy in hepatocellular carcinoma.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ai-Ling Tian ◽  
Qi Wu ◽  
Peng Liu ◽  
Liwei Zhao ◽  
Isabelle Martins ◽  
...  

AbstractThe integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant (S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine. Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and hydroxychloroquine to elicit the integrated stress response.


2020 ◽  
Vol 145 ◽  
pp. 105081 ◽  
Author(s):  
Tomoki Kuwahara ◽  
Kai Funakawa ◽  
Tadayuki Komori ◽  
Maria Sakurai ◽  
Gen Yoshii ◽  
...  

Author(s):  
Jan Homolak ◽  
Ivan Kodvanj

While the COVID-19 pandemic advances, the scientific community struggles in the search for treatments. Several improvements have been made, including the discovery of clinical efficacy of chloroquine (CQ) in COVID-19 patients, but the effective treatment protocols are still missing. In order to find novel treatment options many scientists utilize the in silico approach to identify compounds that could interfere with the key molecules involved in entrance, replication, or dissemination of the SARS-CoV-2. However, most of the identified molecules are currently not available as pharmacological agents, and assessing their safety and efficacy could take many months. Here, we took a different approach based on the proposed pharmacodynamic model of CQ in COVID-19. The main mechanism of action responsible for the favourable outcome of COVID-19 patients treated with CQ seems to be related to pH modulation-mediated effect on the endolysosomal trafficking, a characteristic of chemical compounds often called lysosomotropic agents because of the physico-chemical properties that enable them to passively diffuse through the endosomal membrane and undergo protonation-based trapping in the lumen of the acidic vesicles. In this review, we discuss lysosomotropic drugs that are already in clinical use and are characterized by good safety profiles, low cost, and wide availability. We emphasize that some of these drugs, in particular azithromycin and other macrolide antibiotics, indomethacin and some other non-steroidal anti-inflammatory drugs, proton pump inhibitors, and fluoxetine could provide additional therapeutic benefits in addition to the potential antiviral effect that still has to be confirmed by well-controlled clinical trials. As some of these drugs, mostly antibiotics, were already empirically used in the treatment of COVID-19, we encourage our colleagues all over the world to publish patient data so potential efficacy of lysosomotropic agents can be evaluated in the clinical context and rapidly implemented in the therapeutic protocols if the beneficial effect on clinical outcome is observed.


2019 ◽  
Vol 12 (4) ◽  
pp. 261-271
Author(s):  
Soni Shaikh ◽  
Suman K Nandy ◽  
Carles Cantí ◽  
Sergio Lavandero

Objective: Bafilomycin-A1 and ML9 are lysosomotropic agents, irrespective of cell types. However, the mechanisms of lysosome targeting either bafilomycin-A1 or ML9 are unclear. Methods: The present research has been carried out by different molecular and biochemical analyses like western blot, confocal imaging and FACS studies, as well as molecular docking. Results: Our data shows that pre-incubation of neonatal cardiomyocytes with ML9 for 4h induced cell death, whereas a longer period of time (24h) with bafilomycin-A1 was required to induce an equivalent effect. Neither changes in ROS nor ATP production is associated with such death mechanisms. Flow cytometry, LC3-II expression levels, and LC3-GFP puncta formation revealed a similar lysosomotropic effect for both compounds. We used a molecular docking approach, that predicts a stronger inhibitory activity against V-ATPase-C1 and C2 domains for bafilomycin-A1 in comparison to ML9. Conclusion: Bafilomycin-A1 and ML9 are lysosomotropic agents, involved in cell death events. But such death events are not associated with ATP and ROS production. Furthermore, both the drugs target lysosomes through different mechanisms. For the latter, cell death is likely due to lysosomal membrane permeabilization and release of lysosomal proteases into the cytosol.


2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Gabrielle Pastenkos ◽  
Becky Lee ◽  
Suzanne M. Pritchard ◽  
Anthony V. Nicola

ABSTRACTBovine herpesvirus 1 (BoHV-1) is an alphaherpesvirus that poses a significant challenge to health and welfare in the cattle industry. We investigated the cellular entry route utilized by BoHV-1. We report that BoHV-1 enters Madin Darby bovine kidney (MDBK) cells, bovine turbinate cells, and African green monkey kidney (Vero) cells via a low-pH-mediated endocytosis pathway. Treatment of MDBK cells with hypertonic medium, which inhibits receptor-mediated endocytosis, prevented infection as measured by a beta-galactosidase reporter assay. Treatment of cells with noncytotoxic concentrations of the lysosomotropic agents ammonium chloride and monensin, which block the acidification of endosomes, inhibited BoHV-1 entry in a concentration-dependent fashion. The kinetics of endocytic uptake of BoHV-1 from the cell surface was rapid (50% uptake by ∼5 min). Time-of-addition experiments indicated that the lysosomotropic agents acted at early times postinfection, consistent with entry. Inactivation of virions by pretreatment with mildly acidic pH is a hallmark characteristic of viruses that utilize a low-pH-activated entry pathway. When BoHV-1 particles were exposed to pH 5.0 in the absence of target membrane, infectivity was markedly reduced. Lastly, treatment of cells with the proteasome inhibitor MG132 inhibited BoHV-1 entry in a concentration-dependent manner. Together, these results support a model of BoHV-1 infection in which low endosomal pH is a critical host trigger for fusion of the viral envelope with an endocytic membrane and necessary for successful infection of the target cell.IMPORTANCEBoHV-1 is a ubiquitous pathogen affecting cattle populations worldwide. Infection can result in complicated, polymicrobial infections due to the immunosuppressive properties of the virus. While there are vaccines on the market, they only limit disease severity and spread but do not prevent infection. The financial and animal welfare ramifications of this virus are significant, and in order to develop more effective prevention and treatment regimens, a more complete understanding of the initial steps in viral infection is necessary. This research establishes the initial entry pathway of BoHV-1, which provides a foundation for future development of effective treatments and preventative vaccines. Additionally, it allows comparisons to the entry pathways of other alphaherpesviruses, such as HSV-1.


2017 ◽  
Vol 85 (1) ◽  
pp. 30-34 ◽  
Author(s):  
S. Wernersson ◽  
M. Riihimäki ◽  
G. Pejler ◽  
I. Waern

Leukemia ◽  
2016 ◽  
Vol 30 (6) ◽  
pp. 1290-1300 ◽  
Author(s):  
R F Dielschneider ◽  
H Eisenstat ◽  
S Mi ◽  
J M Curtis ◽  
W Xiao ◽  
...  

2015 ◽  
Vol 24 (7) ◽  
pp. 516-521 ◽  
Author(s):  
Eva Hagforsen ◽  
Aida Paivandy ◽  
Maria Lampinen ◽  
Simone Weström ◽  
Gabriela Calounova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document