methanococcus voltae
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 1)

H-INDEX

28
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Devon Payne ◽  
Eric M. Shepard ◽  
Rachel L. Spietz ◽  
Katherine Steward ◽  
Sue Brumfield ◽  
...  

Methanogens have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, deploy, and store these elements and how this, in turn, affects their physiology. Methanogens were recently shown to reduce pyrite (FeS 2 ) generating aqueous iron-sulfide (FeS (aq) ) clusters that are likely assimilated as a source of Fe and S. Here, we compare the phenotype of Methanococcus voltae when grown with FeS 2 or ferrous iron (Fe(II)) and sulfide (HS - ). FeS 2 -grown cells are 33% smaller yet have 193% more Fe than Fe(II)/HS - -grown cells. Whole cell EPR revealed similar distributions of paramagnetic Fe, although FeS 2 -grown cells showed a broad spectral feature attributed to intracellular thioferrate-like nanoparticles. Differential proteomic analyses showed similar expression of core methanogenesis enzymes, indicating that Fe and S source does not substantively alter the energy metabolism of cells. However, a homolog of the Fe(II) transporter FeoB and its putative transcriptional regulator DtxR were up-expressed in FeS 2 -grown cells, suggesting that cells sense Fe(II) limitation. Two homologs of IssA, a protein putatively involved in coordinating thioferrate nanoparticles, were also up-expressed in FeS 2 -grown cells. We interpret these data to indicate that, in FeS 2 -grown cells, DtxR cannot sense Fe(II) and therefore cannot down-regulate FeoB. We suggest this is due to the transport of Fe(II) complexed with sulfide (FeS (aq) ) leading to excess Fe that is sequestered by IssA as a thioferrate-like species. This model provides a framework for the design of targeted experiments aimed at further characterizing Fe acquisition and homeostasis in M. voltae and other methanogens. IMPORTANCE FeS 2 is the most abundant sulfide mineral in the Earth’s crust and is common in environments inhabited by methanogenic archaea. FeS 2 can be reduced by methanogens, yielding aqueous FeS (aq) clusters that are thought to be a source of Fe and S. Here, we show that growth of Methanococcus voltae on FeS 2 results in smaller cell size and higher Fe content per cell, with Fe likely stored intracellularly as thioferrate-like nanoparticles. Fe(II) transporters and storage proteins were up-regulated in FeS 2 -grown cells. These responses are interpreted to result from cells incorrectly sensing Fe(II) limitation due to assimilation of Fe(II) as FeS (aq) . These findings have implications for our understanding of how Fe/S availability influences methanogen physiology and the biogeochemical cycling of these elements.


Author(s):  
N. Sivaji ◽  
K. V. Abhinav ◽  
M. Vijayan

A lectin fromMethanococcus voltaeA3 has been cloned, expressed, purified and characterized. The lectin appears to be specific for complex sugars. The protein crystallized in a tetragonal space group, with around 16 subunits in the asymmetric unit. Sequence comparisons indicate the lectin to have a β-prism I fold, with poor homology to lectins of known three-dimensional structure.


2008 ◽  
Vol 191 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Bonnie Chaban ◽  
Susan M. Logan ◽  
John F. Kelly ◽  
Ken F. Jarrell

ABSTRACT Recent advances in the field of prokaryotic N-glycosylation have established a foundation for the pathways and proteins involved in this important posttranslational protein modification process. To continue the study of the Methanococcus voltae N-glycosylation pathway, characteristics of known eukaryotic, bacterial, and archaeal proteins involved in the N-glycosylation process were examined and used to select candidate M. voltae genes for investigation as potential glycosyl transferase and flippase components. The targeted genes were knocked out via linear gene replacement, and the resulting effects on N-glycan assembly were identified through flagellin and surface (S) layer protein glycosylation defects. This study reports the finding that deletion of two putative M. voltae glycosyl transferase genes, designated aglC (for archaeal glycosylation) and aglK, interfered with proper N-glycosylation. This resulted in flagellin and S-layer proteins with significantly reduced apparent molecular masses, loss of flagellar assembly, and absence of glycan attachment. Given previous knowledge of both the N-glycosylation pathway in M. voltae and the general characteristics of N-glycosylation components, it appears that AglC and AglK are involved in the biosynthesis or transfer of diacetylated glucuronic acid within the glycan structure. In addition, a knockout of the putative flippase candidate gene (Mv891) had no effect on N-glycosylation but did result in the production of giant cells with diameters three to four times that of wild-type cells.


2008 ◽  
Vol 190 (6) ◽  
pp. 2217-2220 ◽  
Author(s):  
Hosam Shams-Eldin ◽  
Bonnie Chaban ◽  
Sebastian Niehus ◽  
Ralph T. Schwarz ◽  
Ken F. Jarrell

ABSTRACT The Mv1751 gene product is thought to catalyze the first step in the N-glycosylation pathway in Methanococcus voltae. Here, we show that a conditional lethal mutation in the alg7 gene (N-acetylglucosamine-1-phosphate transferase) in Saccharomyces cerevisiae was successfully complemented with Mv1751, highlighting a rare case of cross-domain complementation.


2006 ◽  
Vol 360 (3) ◽  
pp. 537-547 ◽  
Author(s):  
Xinguo Qian ◽  
Yujiong He ◽  
Yan Wu ◽  
Yu Luo
Keyword(s):  

2005 ◽  
Vol 187 (3) ◽  
pp. 1188-1191 ◽  
Author(s):  
Sonia L. Bardy ◽  
Sandy Y. M. Ng ◽  
David S. Carnegie ◽  
Ken F. Jarrell

ABSTRACT Site-directed mutagenesis studies of the signal peptidase of the methanogenic archaeon Methanococcus voltae identified three conserved residues (Ser52, His122, and Asp148) critical for activity. The requirement for one conserved aspartic acid residue distinguishes the archaeal enzyme from both the Escherichia coli and yeast Sec11 enzymes.


Sign in / Sign up

Export Citation Format

Share Document