scholarly journals Characterization of atmospheric pollen with active remote sensing

Author(s):  
◽  
Stephanie Bohlmann ◽  

Atmospheric pollen is a well-known health threat causing allergy-related diseases. As a biogenic aerosol, pollen also affects the climate by directly absorbing and scattering solar radiation and by acting as cloud condensation or ice nuclei. A good understanding of pollen distribution and transport mechanisms is needed to evaluate the environmental and health impacts of pollen. However, pollen observations are usually performed close to ground and vertical information, which could be used to evaluate and improve pollen transport models, is widely missing. In this thesis, the applicability of lidar measurements to detect pollen in the atmosphere is investigated. For this purpose, measurements of the multiwavelength Raman polarization lidar PollyXT at the rural forest site in Vehmasmäki (Kuopio), Eastern Finland have been utilized. The depolarization ratio was identified to be the most valuable optical property for the detection of atmospheric pollen, as nonspherical pollen like pine and spruce pollen causes high depolarization ratios. However, detected depolarization ratios coincide with typical values for dusty mixtures and additional information such as backward trajectories need to be considered to ensure the absence of other depolarizing aerosols like dust. To separate pollen from background aerosol, a method to estimate the optical properties of pure pollen using lidar measurements was developed. Under the assumption that the Ångström exponent of pure pollen is zero, the depolarization ratio of pure pollen can be estimated. Depolarization ratios for birch and pine pollen at 355 and 532 nm were determined and suggested a wavelength dependence of the depolarization ratio. To further investigate this wavelength dependence, the possibility to use depolarization measurements of Halo Doppler lidars (1565 nm) was explored. In the lower troposphere, Halo Doppler lidars can provide reasonable depolarization values with comparable quality to PollyXT measurements. Finally, measurements of PollyXT and a Halo StreamLine Doppler lidar were used to determine the depolarization ratio at three wavelengths. A wavelength dependence of the particle depolarization ratio with maximum depolarization at 532 nm was found. This could be a characteristic feature of non-spherical pollen and the key to distinguish pollen from other depolarizing aerosol types.

2020 ◽  
Author(s):  
Stephanie Bohlmann ◽  
Xiaoxia Shang ◽  
Ville Vakkari ◽  
Elina Giannakaki ◽  
Ari Leskinen ◽  
...  

Abstract. Lidar observations during the pollen season 2019 at the European Aerosol Research Lidar Network (EARLINET) station in Kuopio, Finland were analyzed in order to optically characterize atmospheric pollen. Previous studies showed the detectability of non-spherical pollen using depolarization ratio measurements. We present lidar depolarization ratio measurements at three wavelengths of atmospheric pollen in ambient conditions. In addition to the depolarization ratio detected with the multiwavelength Raman polarization lidar PollyXT at 355 and 532 nm, depolarization measurements of a co-located HALO Photonics Streamline Doppler lidar at 1565 nm were utilized. During a four days period of high birch (Betula) and spruce (Picea abies) pollen concentrations, unusually high depolarization ratios were observed within the boundary layer. Detected layers were investigated regarding the share of spruce pollen to the total pollen number concentration. Daily mean particle depolarization ratios of the pollen layers on the day with the highest spruce pollen share are 0.10 ± 0.02, 0.38 ± 0.23 and 0.29 ± 0.10 at 355, 532 and 1565 nm, respectively. Whereas on days with lower spruce pollen share, depolarization ratios are lower with less wavelength dependence. This spectral dependence of the depolarization ratios could be indicative of big, non-spherical spruce pollen. The depolarization ratio of pollen particles was investigated by applying a newly developed method and assuming a backscatter-related Ångström exponent of zero. Depolarization ratios of 0.44 and 0.16 at 532 and 355 nm for the birch and spruce pollen mixture were determined.


2021 ◽  
Vol 21 (9) ◽  
pp. 7083-7097
Author(s):  
Stephanie Bohlmann ◽  
Xiaoxia Shang ◽  
Ville Vakkari ◽  
Elina Giannakaki ◽  
Ari Leskinen ◽  
...  

Abstract. Lidar observations during the pollen season 2019 at the European Aerosol Research Lidar Network (EARLINET) station in Kuopio, Finland, were analyzed in order to optically characterize atmospheric pollen. Pollen concentration and type information were obtained by a Hirst-type volumetric air sampler. Previous studies showed the detectability of non-spherical pollen using depolarization ratio measurements. We present lidar depolarization ratio measurements at three wavelengths of atmospheric pollen in ambient conditions. In addition to the depolarization ratio detected with the multiwavelength Raman polarization lidar PollyXT at 355 and 532 nm, depolarization measurements of a co-located Halo Doppler lidar at 1565 nm were utilized. During a 4 d period of high birch (Betula) and spruce (Picea abies) pollen concentrations, unusually high depolarization ratios were observed within the boundary layer. Detected layers were investigated regarding the share of spruce pollen to the total pollen number concentration. Daily mean linear particle depolarization ratios of the pollen layers on the day with the highest spruce pollen share are 0.10 ± 0.02, 0.38 ± 0.23 and 0.29 ± 0.10 at 355, 532 and 1565 nm, respectively, whereas on days with lower spruce pollen share, depolarization ratios are lower with less wavelength dependence. This spectral dependence of the depolarization ratios could be indicative of big, non-spherical spruce pollen. The depolarization ratio of pollen particles was investigated by applying a newly developed method and assuming a backscatter-related Ångström exponent of zero. Depolarization ratios of 0.44 and 0.16 at 532 and 355 nm for the birch and spruce pollen mixture were determined.


2018 ◽  
Vol 18 (16) ◽  
pp. 11847-11861 ◽  
Author(s):  
Moritz Haarig ◽  
Albert Ansmann ◽  
Holger Baars ◽  
Cristofer Jimenez ◽  
Igor Veselovskii ◽  
...  

Abstract. We present spectrally resolved optical and microphysical properties of western Canadian wildfire smoke observed in a tropospheric layer from 5–6.5 km height and in a stratospheric layer from 15–16 km height during a record-breaking smoke event on 22 August 2017. Three polarization/Raman lidars were run at the European Aerosol Research Lidar Network (EARLINET) station of Leipzig, Germany, after sunset on 22 August. For the first time, the linear depolarization ratio and extinction-to-backscatter ratio (lidar ratio) of aged smoke particles were measured at all three important lidar wavelengths of 355, 532, and 1064 nm. Very different particle depolarization ratios were found in the troposphere and in the stratosphere. The obviously compact and spherical tropospheric smoke particles caused almost no depolarization of backscattered laser radiation at all three wavelengths (<3 %), whereas the dry irregularly shaped soot particles in the stratosphere lead to high depolarization ratios of 22 % at 355 nm and 18 % at 532 nm and a comparably low value of 4 % at 1064 nm. The lidar ratios were 40–45 sr (355 nm), 65–80 sr (532 nm), and 80–95 sr (1064 nm) in both the tropospheric and stratospheric smoke layers indicating similar scattering and absorption properties. The strong wavelength dependence of the stratospheric depolarization ratio was probably caused by the absence of a particle coarse mode (particle mode consisting of particles with radius >500 nm). The stratospheric smoke particles formed a pronounced accumulation mode (in terms of particle volume or mass) centered at a particle radius of 350–400 nm. The effective particle radius was 0.32 µm. The tropospheric smoke particles were much smaller (effective radius of 0.17 µm). Mass concentrations were of the order of 5.5 µg m−3 (tropospheric layer) and 40 µg m−3 (stratospheric layer) in the night of 22 August 2017. The single scattering albedo of the stratospheric particles was estimated to be 0.74, 0.8, and 0.83 at 355, 532, and 1064 nm, respectively.


2016 ◽  
Author(s):  
L. Belegante ◽  
J. A. Bravo-Aranda ◽  
V. Freudenthaler ◽  
D. Nicolae ◽  
A. Nemuc ◽  
...  

Abstract. Particle depolarization ratio retrieved from lidar measurements are commonly used for aerosol typing studies, microphysical inversion, or mass concentration retrievals. The particle depolarization ratio is one of the primary parameters that can differentiate several major aerosol components, but only if the measurements are accurate enough. The uncertainties related to the retrieval of particle depolarization ratios are the main factor in determining the accuracy of the derived parameters in such studies. This paper presents an extended analysis of different depolarization calibration procedures, in order to reduce the related uncertainties. The calibration procedures are specific to each lidar system of the European Aerosol Research Lidar Network – EARLINET with polarising capabilities. The results illustrate a significant improvement of the depolarization lidar products for all the selected lidar stations. The calibrated volume and particle depolarization profiles at 532 nm show values that agree with the theory for all selected atmospheric constituents (several aerosol species, ice particles and molecules in the aerosol free regions).


2020 ◽  
Vol 237 ◽  
pp. 02021
Author(s):  
S. Bohlmann ◽  
X. Shang ◽  
E. Giannakaki ◽  
M. Filioglou ◽  
A. Saarto ◽  
...  

Pollen has various effects on human health and the environment. To understand phenomena behind atmospheric pollen transport and hence improve pollen forecasts, vertically resolved optical properties and geometrical characteristics of the pollen distribution need to be studied. Lidar measurements and especially the particle depolarization ratio have been found to be an excellent tool to track pollen grains. In this study we present first results of atmospheric pollen characterization based on a 11 days period of birch and spruce pollination events.


2020 ◽  
Vol 237 ◽  
pp. 02036
Author(s):  
Moritz Haarig ◽  
Holger Baars ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
Kevin Ohneiser ◽  
...  

Canadian wildfire smoke was detected in the troposphere and lower stratosphere over Europe in August and September 2017. Lidar measurements from various stations of the European Aerosol Research Lidar Network (EARLINET) observed the stratospheric smoke layer. Triple-wavelength (355, 532, and 1064 nm) lidar measurements of the depolarization and the lidar ratio are reported from Leipzig, Germany. The particle linear depolarization ratio of the wildfire smoke in the stratosphere had an exceptional strong wavelength dependence reaching from 0.22 at 355 nm, to 0.18 at 532 nm, and 0.04 at 1064 nm. The lidar ratio increased with wavelength from 40±16 sr at 355 nm, to 66±12 sr at 532 nm, and 92±27 sr at 1064 nm. The development of the stratospheric smoke plume over several months was studied by long-term lidar measurements in Cyprus. The stratospheric smoke layers increased in altitude up to 24 km height.


2013 ◽  
Vol 13 (15) ◽  
pp. 7619-7629 ◽  
Author(s):  
Y. M. Noh ◽  
H. Lee ◽  
D. Mueller ◽  
K. Lee ◽  
D. Shin ◽  
...  

Abstract. The diurnal pattern of the vertical distribution of biogenic pollen in the lower troposphere was investigated by LIDAR. Meteorological data were taken at the ground. Pollen concentrations were measured at the surface using a Burkard 7-day-recording volumetric spore sampler. Aerosol extinction coefficients and depolarization ratios at 532 nm were obtained from LIDAR measurements in spring (4 May–2 June) 2009 in Gwangju, South Korea. Linear volume depolarization ratios varied between 0.08 and 0.14 and were observed only during daytime (09:00–17:00 local time (LT)) during days of high pollen concentration (4 to 9 May). Daily average pollen concentrations ranged 1000–2500 cm−3 in the same period. The temporal evolution of the vertical distribution of the linear volume depolarization ratio showed a specific diurnal pattern. Linear volume depolarization ratios of more than 0.06, were measured near the surface in the morning. High depolarization ratios were detected up to 2 km aboveground between 12:00 and 14:00 LT, whereas high depolarization ratios were observed only close to the surface after 17:00 LT. Low values of depolarization ratios (≤0.05) were detected after 18:00 LT until the next morning. During the measurement period, the daily variations of the high depolarization ratios close to the surface showed correlation to number concentration measurements of pollen. This finding suggests that high depolarization ratios could be attributed to enhanced pollen concentrations. The diurnal characteristics of the high values of depolarization ratios are thought to be closely associated with turbulent transport. Diurnal and vertical characteristics of pollen, if measured continuously, could be used to improve the accuracy of pollen-forecasting models via data assimilation studies.


2017 ◽  
Author(s):  
Livio Belegante ◽  
Juan Antonio Bravo-Aranda ◽  
Volker Freudenthaler ◽  
Doina Nicolae ◽  
Anca Nemuc ◽  
...  

Abstract. Particle depolarization ratio retrieved from lidar measurements are commonly used for aerosol typing studies, microphysical inversion, or mass concentration retrievals. The particle depolarization ratio is one of the primary parameters that can differentiate several major aerosol components, but only if the measurements are accurate enough. The uncertainties related to the retrieval of particle depolarization ratios are the main factor in determining the accuracy of the derived parameters in such studies. This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected lidar stations that had implemented depolarization calibration procedures. The calibrated volume and particle depolarization profiles at 532 nm show values that fall within a range of values that are generally accepted in the literature.


2020 ◽  
Author(s):  
Xiaoxia Shang ◽  
Elina Giannakaki ◽  
Stephanie Bohlmann ◽  
Maria Filioglou ◽  
Annika Saarto ◽  
...  

Abstract. We present a novel algorithm for characterizing the optical properties of pure pollen particles, based on the depolarization values obtained in lidar measurements. The algorithm was first tested and validated through a simulator, and then applied to the lidar observations during a four-month pollen campaign from May to August 2016 at the European Aerosol Research Lidar Network (EARLINET) station in Kuopio (62°44′ N, 27°33′ E), in Eastern Finland. Twenty types of pollen were observed and identified from concurrent measurements with Burkard sampler; Birch (Betula), pine (Pinus), spruce (Picea) and nettle (Urtica) pollen were most abundant, contributing more than 90 % of total pollen load, regarding number concentrations. Mean values of lidar-derived optical properties in the pollen layer were retrieved for four intense pollination periods (IPPs). Lidar ratios at both 355 and 532 nm ranged from 55 to 70 sr for all pollen types, without significant wavelength-dependence. Enhanced depolarization ratio was found when there were pollen grains in the atmosphere, and even higher depolarization ratio (with mean values of 25 % or 14 %) was observed with presence of the more non-spherical spruce or pine pollen. The depolarization ratio at 532 nm of pure pollen particles was assessed, resulting to 24 ± 3 % and 36 ± 5 % for birch and pine pollen, respectively. Pollen optical properties at 1064 nm and 355 nm were also estimated. The backscatter-related Ångström exponent between 532 and 1064 nm was assessed as ~ 0.8 (~ 0.5) for pure birch (pine) pollen, thus the longer wavelength would be better choice to trace pollen in the air. The pollen depolarization ratio at 355 nm of 17 % and 30 % were found for birch and pine pollen, respectively. The depolarization values show a wavelength dependence for pollen. This can be the key parameter for pollen detection and characterization.


2020 ◽  
Vol 13 (2) ◽  
pp. 893-905 ◽  
Author(s):  
Elina Giannakaki ◽  
Panos Kokkalis ◽  
Eleni Marinou ◽  
Nikolaos S. Bartsotas ◽  
Vassilis Amiridis ◽  
...  

Abstract. A new method, called ElEx (elastic extinction), is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. ElEx uses the particle backscatter profiles at 532 nm and the vertically resolved particle linear depolarization ratio measurements at the same wavelength. The particle linear depolarization ratio and the lidar ratio values of pure aerosol types are also taken from literature. The total extinction profile is then estimated and compared well with Raman retrievals. In this study, ElEx was applied in an aerosol mixture of marine and dust particles at Finokalia station during the CHARADMExp campaign. Any difference between ElEx and Raman extinction profiles indicates that the nondust component could be probably attributed to polluted marine or polluted continental aerosols. Comparison with sun photometer aerosol optical depth observations is performed as well during daytime. Differences in the total aerosol optical depth are varying between 1.2 % and 72 %, and these differences are attributed to the limited ability of the lidar to correctly represent the aerosol optical properties in the near range due to the overlap problem.


Sign in / Sign up

Export Citation Format

Share Document