thermal zone
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 2)

Energy ◽  
2020 ◽  
Vol 210 ◽  
pp. 118411
Author(s):  
Yixiang Gao ◽  
Shuhui Li ◽  
Xingang Fu ◽  
Weizhen Dong ◽  
Bing Lu ◽  
...  

Scanning ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Andrea Gil-Torrano ◽  
Auxiliadora Gómez-Morón ◽  
José María Martín ◽  
Rocío Ortiz ◽  
Mª del Camino Fuertes Santos ◽  
...  

The archaeological site of Cercadilla (Cordoba, Spain) includes a complete chronological sequence from the 3rd to 12th centuries. The most relevant monument is a Roman palace dated between the end of the 3rd century and the beginning of the 4th century AD. It is believed that it was the headquarters of the Emperor Maximiano Herculeo. A bathtub with mural paintings has been found in the thermal zone of the palace. Regarding the occupation of the archaeological site in the medieval period, it should be pointed out that two houses with mural paintings were found; these belong to the Caliphal era (10th-11th centuries). During the Caliphal era, the archaeological site was mostly occupied by one of the large suburbs surrounding the walled city. Cercadilla was gradually abandoned; this process starts at the beginning of the 11th century. This study is focused on the analysis of pigments and preparatory layers of red and white mural paintings of the Roman period in the bath zone and on the analysis of pigments in mural paintings in two houses of the Caliphal era. In the thermal zone, the walls have a white mural painting with vertical and horizontal red bands, while the walls in the two Caliphal houses present the red mural painting decorated with white stripes. Techniques such as Optical Microscopy (OM), Scanning Electron Microscopy in combination with Energy Dispersive X-ray Microanalysis (SEM-EDX), X-ray Diffraction (XRD), micro X-ray Diffraction (μ-XRD), Wavelength Dispersive X-ray Fluorescence (WD-XRF), and Fourier Transform-Infrared Spectroscopy (FT-IR) have been used to study the mural paintings of this archaeological site. The results allowed to determine the composition of the materials used and to understand the differences between the technologies employed in Roman and Caliphal remains studied.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 503 ◽  
Author(s):  
Frank Florez ◽  
Pedro Fernández de Córdoba ◽  
José Luis Higón ◽  
Gerard Olivar ◽  
John Taborda

To reduce the energy consumption in buildings is necessary to analyze individual rooms and thermal zones, studying mathematical models and applying new control techniques. In this paper, the design, simulation and experimental evaluation of a sliding mode controller for regulating internal temperature in a thermal zone is presented. We propose an experiment with small physical dimensions, consisting of a closed wooden box with heat internal sources to stimulate temperature gradients through operating and shut down cycles.


2019 ◽  
Vol 24 ◽  
pp. 1-13 ◽  
Author(s):  
Qian Huang ◽  
Kane Rodriguez ◽  
Nicholas Whetstone ◽  
Steven Habel

According to the U.S. Department of Energy, a significant portion of energy used in buildings is wasted. If the occupancy quantity in a pre-determined thermal zone is aware, a building automation system (BAS) is able to intelligently adjust the building operation to provide “just-enough” heating, cooling, and ventilation capacities to building users. Therefore, an occupancy counting device that can be widely deployed at low prices with low failure rate, small form-factor, good usability, and conserved user privacy is highly desirable. Existing occupancy detection or recognition sensors (e.g., passive infrared, camera, acoustic, RFID, CO2) cannot meet all these above system requirements. In this work, we present an IoT (Internet of Things) prototype that collects room occupancy information to assist in the operation of energy-efficient buildings. The proposed IoT prototype consists of Lattice iCE40-HX1K stick FPGA boards and Raspberry Pi modules. Two pairs of our prototypes are installed at a door frame. When a person walks through this door frame, blocking of active infrared streams between both pairs of IoT prototypes is detected. The direction of human movement is obtained through comparing occurrence time instances of two obstructive events. Thus, the change in occupancy quantity of a thermal zone is calculated and updated. Besides, an open-source application user interface is developed to allow anonymous users or building automation systems to easily acquire room occupancy information. We carry out a three-month random test of human entry and exit of a thermal zone, and find that the occupancy counting accuracy is 97%. The proposed design is completely made of off-the-shelf electronic components and the estimated cost is less than $160. To investigate the impact on building energy savings, we conduct a building energy simulation using EnergyPlus and find the payback period is approximately 4 months. In summary, the proposed design is miniature, non-intrusive, ease of use, low failure rate, and cost-effective for smart buildings.


2018 ◽  
Vol 5 (1) ◽  
pp. e000315 ◽  
Author(s):  
Mitsutomo Kohno ◽  
Ryo Hashimoto ◽  
Kana Oiwa ◽  
Hideki Yashiro ◽  
Seishi Nakatsuka ◽  
...  

IntroductionPercutaneous cryoablation has been adopted for small, malignant peripheral pulmonary lesions and has yielded favourable results as a less invasive local treatment. A transbronchial approach may reduce the risks of complications, such as pneumothorax and pleural haemorrhage. A fundamental animal experiment on transbronchial cryoablation was performed to examine its immediate safety and effectiveness.MethodsExperimental cryoablation was performed on swine lungs using a rigid cryoprobe, 2.4 mm in diameter. The probe was introduced from the right main bronchus into the distal bronchus via thoracotomy, perforated the end of the conducting bronchus and reached the lung parenchyma. The temperature of the cryoprobe tip reaches approximately −130°C during freezing and approximately 20°C during thawing. After three freeze-thaw cycles, the cryoprobe was removed.ResultsNo significant haemorrhage was bronchoscopically observed in the airways throughout the experiment. The chronological changes and spatial distribution of the temperature of the pulmonary tissue circumferential to the point of the cryoprobe were similar to those seen with transpleural cryoablation and the less than −20°C thermal zone seemed to be established within a radius of at least 12 mm. The central destruction zone of alveolar structures was histologically similar to the thermal zone, while the conducting bronchus structure and the accompanying pulmonary artery were not severely affected.ConclusionExperimental transbronchial cryoablation with a rigid cryoprobe could effectively freeze and destroy peripheral lung alveoli without any significant immediate adverse effects. This may suggest the potential clinical application of transbronchial cryoablation for peripheral malignant lung lesions.


2017 ◽  
Vol 17 (2) ◽  
pp. 1-6
Author(s):  
A. E. Roshdestvensky ◽  
G. A. Malyshev
Keyword(s):  

2017 ◽  
Vol 112 ◽  
pp. 771-783 ◽  
Author(s):  
Diego A. Vasco ◽  
Manuel Muñoz-Mejías ◽  
Rodrigo Pino-Sepúlveda ◽  
Roberto Ortega-Aguilera ◽  
Claudio García-Herrera

Sign in / Sign up

Export Citation Format

Share Document