scholarly journals A Review of 50 Years of Study of Hydrology, Wetland Dynamics, Aquatic Metabolism, Water Quality and Trophic Status, and Nutrient Biogeochemistry in the Barataria Basin, Mississippi Delta—System Functioning, Human Impacts and Restoration Approaches

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 642 ◽  
Author(s):  
John W. Day ◽  
William H. Conner ◽  
Ronald D. DeLaune ◽  
Charles S. Hopkinson ◽  
Rachael G. Hunter ◽  
...  

Here we review an extensive series of studies of Barataria Basin, an economically and ecologically important coastal basin of the Mississippi Delta. Human activity has greatly altered the hydrology of the basin by decreasing riverine inflows from leveeing of the river and its distributaries, increasing runoff with high nutrient concentrations from agricultural fields, and channelization of wetlands of the basin interior that has altered flow paths to often bypass wetlands. This has resulted in degraded water quality in the upper basin and wetland loss in the lower basin. Trophic state analysis found the upper basin to be eutrophic and the lower basin to be mesotrophic. Gross aquatic primary production (GAPP) was highest in the upper basin, lowest in the mid basin, and intermediate in the lower basin. Forested wetlands in the upper basin have degraded over the past several decades due to increased periods of flooding, while there has been massive loss of emergent wetlands in the lower basin due to increasing water levels and pervasive alteration of hydrology. Restoration will entail reconnection of waterways with surrounding wetlands in the upper basin, and implementation of river sediment diversions, marsh creation using dredged sediments and barrier island restoration. Findings from this review are discussed in terms of the functioning of deltas globally.

1996 ◽  
Vol 27 (3) ◽  
pp. 203-214 ◽  
Author(s):  
Jan A. Høybye

An important part of regional planning of water resources and quality is efficient design of monitoring systems and proper use of hydrologic models (Beven 1993). In the design of monitoring systems as well as validation of numerical models, based on, for example, the equation of continuity such as hydrologic routing models and mass balance nutrient models, it is essential to estimate the uncertainties of the model-predictions. This paper presents an implementation of a first-order analysis for estimating the error-propagation when introducing mass balance models as to predict nutrient-concentrations. The uncertainty assessment, developed from a first order theory, is implemented in the analysis and modelling of Hjarbaek fjord in Denmark. The project includes hydrological modelling of input of water and nutrients to the fjord from tributaries, and a hydrodynamic estimation of water levels and velocities in the fjord. A two-system water quality box-model is used for estimation of concentrations in water and sediment phases. The system uncertainties are analysed, starting with input data uncertainties and the error propagation to the final concentration estimates, in order to optimise the future monitoring programme, and to control the model results.


2021 ◽  
Author(s):  
Haiyan Wang ◽  
Jun Yang ◽  
Tao Li ◽  
Jianqiang Zhu ◽  
Zhangyong Liu

Abstract Changhu Lake, a large shallow eutrophic lake in central China, experienced an extreme low water level event from November 2015 to January 2016 followed by an extreme high water level event in July 2016. In this study, we examined the effects of two extreme water levels on the nutrient status of Changhu Lake over five years. The nutrient concentrations in Changhu Lake showed significant interannual variations and the water quality of sites in the western part of Changhu Lake was better compared to sites at the outlet of the lake. In late 2015, the effect of low water levels led to a significant increase in nutrient concentrations. After July 2016, however, the high water level occurred leading to a marked decrease in nutrient concentrations. These changes in nutrient parameters were strongly related to the water level fluctuations. The dilution effect was the key process that determined the variations of nutrient parameters in Changhu Lake. As extreme water levels are likely to become more frequent during the twenty-first century, this work may provide some insights into the conservation and management of lake ecosystems in the face of climate change and human activity.


Shore & Beach ◽  
2020 ◽  
pp. 65-71
Author(s):  
Whitney Thompson ◽  
Christopher Paul ◽  
John Darnall

Coastal Louisiana received significant funds tied to BP penalties as a result of the Deepwater Horizon incident. As it is widely considered that the State of Louisiana sustained most of the damage due to this incident, there has been a firm push to waste no time in implementing habitat restoration projects. Sustaining the land on the coast of Louisiana is vital to our nation’s economy, as several of the nation’s largest ports are located on the Gulf coast in Louisiana. In addition, the ecosystems making up the Louisiana coast are important to sustain some of the largest and most valuable fisheries in the nation. Funded by BP Phase 3 Early Restoration, the goals of the Natural Resource Damage Assessment (NRDA) Outer Coast Restoration Project are to restore beach, dune, and marsh habitats to help compensate spill-related injuries to habitats and species, specifically brown pelicans, terns, skimmers, and gulls. Four island components in Louisiana were funded under this project; Shell Island Barrier Restoration, Chenier Ronquille Barrier Island Restoration, Caillou Lake Headlands Barrier Island Restoration, and North Breton Island Restoration (https://www. gulfspillrestoration.noaa.gov/louisiana-outer-coast-restoration, NOAA 2018). Shell Island and Chenier Ronquille are critical pieces of barrier shoreline within the Barataria Basin in Plaquemines Parish, Louisiana. These large-scale restoration projects were completed in the years following the Deepwater Horizon incident, creating new habitat and reinforcing Louisiana’s Gulf of Mexico shoreline. The Louisiana Coastal Protection and Restoration Authority (CPRA) finished construction of the Shell Island NRDA Restoration Project in 2017, which restored two barrier islands in Plaquemines Parish utilizing sand hydraulically dredged from the Mississippi River and pumped via pipeline over 20 miles over levees and through towns, marinas, and marshes to the coastline. The National Marine Fisheries Service (NMFS) also completed the Plaquemines Parish barrier island restoration at Chenier Ronquille in 2017 utilizing nearshore Gulf of Mexico sediment, restoring wetland, coastal, and nearshore habitat in the Barataria Basin. A design and construction overview is provided herein.


1990 ◽  
Vol 22 (5) ◽  
pp. 137-144 ◽  
Author(s):  
M. T. Dokulil ◽  
G. A. Janauer

The system “Neue Donau” functions as a control system for high waters of the river Danube and is an important recreational area for many people. Water quality and trophic status of the water body is thereforeof prime importance. The high nutrient concentrations of the river Danube (P-tot 238±41µg/l, N-tot 2.53±0.78 mg/l) reach the system via groundwater seepage. Present conditions in the basin of Neue Donau are,as a result of this nutrient in-flux,eutrophic to hypertrophic. Average values during the summer period have declined from 366 µg/l total phosphorus to 78 µg/l, and from 86 µg/l chlorophyll-a tol7µg/l between the years 1985 and 1988. However, a dam which is planned in the river at Vienna will permanently raise the water level of the river thus increasing the the groundwater flow in the direction to the Neue Donau and therefore the nutrient input which will enhance trophic conditions in the impoundment. Since macrophytes play an important role in one part of the system macrophyte management together with measures along the river are some of the suggested strategies to keep the system Neue Donau at acceptable trophic conditions and good water quality.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 86
Author(s):  
Angeliki Mentzafou ◽  
George Varlas ◽  
Anastasios Papadopoulos ◽  
Georgios Poulis ◽  
Elias Dimitriou

Water resources, especially riverine ecosystems, are globally under qualitative and quantitative degradation due to human-imposed pressures. High-temporal-resolution data obtained from automatic stations can provide insights into the processes that link catchment hydrology and streamwater chemistry. The scope of this paper was to investigate the statistical behavior of high-frequency measurements at sites with known hydromorphological and pollution pressures. For this purpose, hourly time series of water levels and key water quality indicators (temperature, electric conductivity, and dissolved oxygen concentrations) collected from four automatic monitoring stations under different hydromorphological conditions and pollution pressures were statistically elaborated. Based on the results, the hydromorphological conditions and pollution pressures of each station were confirmed to be reflected in the results of the statistical analysis performed. It was proven that the comparative use of the statistics and patterns of the water level and quality high-frequency time series could be used in the interpretation of the current site status as well as allowing the detection of possible changes. This approach can be used as a tool for the definition of thresholds, and will contribute to the design of management and restoration measures for the most impacted areas.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2117
Author(s):  
Su-mi Kim ◽  
Hyun-su Kim

The variations in water quality parameters and trophic status of a multipurpose reservoir in response to changing intensity of monsoon rain was investigated by applying a trophic state index deviation (TSID) analysis and an empirical regression model to the data collected in two periods from 2014 to 2017. The reservoir in general maintained mesotrophic conditions, and Carlson’s trophic state index (TSIc) was affected most by TSITP. Nutrient concentrations, particularly phosphorus, did not show strong correlations with precipitation, particularly in the period with weak monsoon, and a significant increase in total phosphorus (TP) was observed in Spring 2015, indicating the possibility of internal phosphorus loading under decreased depth and stability of water body due to a lack of precipitation. TSIChl was higher than TSISD in most data in period 1 when a negligible increase in precipitation was observed in the monsoon season while a significant fraction in period 2 showed the opposite trend. Phytoplankton growth was not limited by nutrient limitation although nutrient ratios (N/P) of most samples were significantly higher than 20, indicating phosphorus-limited condition. TSID and regression analysis indicated that phytoplankton growth was limited by zooplankton grazing in the Spring, and that cell concentrations and community structure in the monsoon and post-monsoon season were controlled by the changing intensity of the monsoon, as evidenced by the positive and negative relationships between community size and cyanobacterial population with the amount of precipitation in the Summer, respectively. The possibility of contribution from internal loading and an increase in cyanobacterial population associated with weak monsoon, in addition to potential for nutrient enrichment in the post-monsoon season, implies a need for the application of more stringent water quality management in the reservoir that can handle all potential scenarios of eutrophication.


2020 ◽  
Vol 28 (2) ◽  
pp. 138-163
Author(s):  
C.W. Cuss ◽  
C.N. Glover ◽  
M.B. Javed ◽  
A. Nagel ◽  
W. Shotyk

The concentrations of trace elements (TEs) in large boreal rivers can fluctuate markedly due to changing water levels and flow rates associated with spring melt and variable contributions from tributaries and groundwaters, themselves having different compositions. These fluctuating and frequently high concentrations create regulatory challenges for protecting aquatic life. For example, water quality criteria do not account for changes in flow regimes that can result in TE levels that may exceed regulatory limits, and neither do they account for the markedly different lability and bioaccessibility of suspended solids. This review addresses the geochemical and biological processes that govern the lability and bioaccessibility of TEs in boreal rivers, with an emphasis on the challenges posed by the colloidal behaviour of many TEs, and their relationship to the dissolved fraction (i.e., <0.45 μm in size). After reviewing the processes and dynamics that give rise to the forms and behaviour of TEs in large boreal rivers, their relevance for aquatic organisms and the associated relationships between size and lability and bioaccessibility are discussed. The importance of biological variables and different forms of TEs for limiting lability and bioaccessibility are also addressed. Two case studies emphasize seasonal fluctuations and accompanying changes in the distribution of TE amongst different size fractions and associated colloidal species in large boreal rivers: the Northern Dvina and one of its tributaries, the Pinega River, both in Russia, and the Athabasca River in Alberta, Canada. Water quality in the Athabasca River is briefly discussed with respect to Canadian guidelines.


2012 ◽  
Vol 63 (9) ◽  
pp. 788 ◽  
Author(s):  
N. E. Pettit ◽  
T. D. Jardine ◽  
S. K. Hamilton ◽  
V. Sinnamon ◽  
D. Valdez ◽  
...  

The present study indicates the critical role of hydrologic connectivity in floodplain waterholes in the wet–dry tropics of northern Australia. These waterbodies provide dry-season refugia for plants and animals, are a hotspot of productivity, and are a critical part in the subsistence economy of many remote Aboriginal communities. We examined seasonal changes in water quality and aquatic plant cover of floodplain waterholes, and related changes to variation of waterhole depth and visitation by livestock. The waterholes showed declining water quality through the dry season, which was exacerbated by more frequent cattle usage as conditions became progressively drier, which also increased turbidity and nutrient concentrations. Aquatic macrophyte biomass was highest in the early dry season, and declined as the dry season progressed. Remaining macrophytes were flushed out by the first wet-season flows, although they quickly re-establish later during the wet season. Waterholes of greater depth were more resistant to the effects of cattle disturbance, and seasonal flushing of the waterholes with wet-season flooding homogenised the water quality and increased plant cover of previously disparate waterholes. Therefore, maintaining high levels of connectivity between the river and its floodplain is vital for the persistence of these waterholes.


2001 ◽  
Vol 1 ◽  
pp. 44-70 ◽  
Author(s):  
Karl E. Havens ◽  
Kang-Ren Jin ◽  
Andrew J. Rodusky ◽  
Bruce Sharfstein ◽  
Mark A. Brady ◽  
...  

In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S.), the Governing Board of the South Florida Water Management District (SFWMD) authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000) of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms). Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater) until August. Furthermore, a vascular plant-dominated assemblage (Vallisnera, Potamogeton, and Hydrilla) that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga) in 2000. Hence, the lake’s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the previous autumn. In mid-October 1999, this category 1 hurricane passed just to the south of the lake, with wind velocities over the lake surface reaching 90 km h-1 at their peak. Output from a three-dimensional hydrodynamic / sediment transport model indicates that during the storm, current velocities in surface waters of the lake increased from near 5 cm s-1to as high as 100 cm s-1. These strong velocities were associated with large-scale uplifting and horizontal transport of fine-grained sediments from the lake bottom. Water quality data collected after the storm confirmed that the hurricane resulted in lake-wide nutrient and suspended solids concentrations far in excess of those previously documented for a 10-year data set. These conditions persisted through the winter months and may have negatively impacted plants that remained in the lake at the end of the 1999 growing season. The results demonstrate that in shallow lakes, unpredictable external forces, such as hurricanes, can play a major role in ecosystem dynamics. In regions where these events are common (e.g., the tropics and subtropics), consideration should be given to how they might affect long-term lake management programs.


2017 ◽  
Vol 14 (3) ◽  
pp. 251
Author(s):  
Rita Yulianti ◽  
Emi Sukiyah ◽  
Nana Sulaksana

Daerah penelitian terletak di desa Muaro Limun, Kecamatan Limun Kabupaten Sarolangun Provinsi Jambi. Sungai limun, salah satu sungai besar di daerah kabupaten sarolangun yang dimanfaatkan oleh mayarakat sekitarnya sebagai sumber penghidupan. Penelitian bertujuan untuk mengetahui pengaruh kegiatan penambangan terhadap kualitas air sungai Batang Limun, dan perubahan sifat fisik dan  kimia yang diakibatkan   kegiatan penambangan.Metode yang digunakan adalah  metode grab sampel, serta stream sedimen untuk dianalis di laboratorium. Sejumlah sampel diambil di beberapa lokasi Penambangan Emas berdasarkan Aliran Sub-DAS dan dibandingkan dengan beberapa sampel lain yang diambil pada lokasi yang belum terkontaminasi oleh kegiatan penambangan. Analisis kualitas air mengacu pada  SMEWWke 22 tahun 2012 dan standar baku mutu air kelas II dalam PP No 82 yang dikeluarkan oleh Menteri Kesehatan No. 492/Menkes/Per/IV/2010. Diketahui sungai Batang Limun telah mengalami perubahan karakteristik fisika dan kimia. Dari grafik  kosentrasi kekeruhan, pH, TSS, TDS  Cu, Pb, Zn, Mn, Hg terlihat bahwa penambang emas tanpa izin (PETI) dengan cara amalgamasi yang menyebabkan terjadinya penurunan kualitas air sungai. Sejak tahun 2009 sampai tahun 2015  sungai Limun dan sekitarnya terus mengalami penurunan kualitas air. Penurunan kualitas yang cukup tinggi terjadi  yaitu peningkatan nilai Rata-rata konsentrasi merkuri pada sungai Batang Limun dari 0,18ppb (0,00018 mg/l)  menjadi 0,3ppb (0,0003 mg/l), peningkatan tersebut dipengaruhi oleh proses kegiatan penambangan dan nilai tersebut masih dibawah standar baku mutu air kelas II  pp nomor 82 tahun 2010.Kata kunci :   Kualitas Air, Sungai Limun,TSS, Merkuri, PETI Limun river is one of the major rivers in the area of Sarolangun, which utilized by the society as a source of livelihood. The aim of study  to analyze the effect of mining activities on  the water quality of Batang Limun River, and the changes of physical and chemical properties of water. The method used are grab  and stream samples to  sediment analyzed in the laboratory. A number of samples were taken at several locations based Flow Gold Mining Sub-watershed and compared to some other samples taken at the location that has not been contaminated by mining activities. Water quality analysis referring to SMEWW, 22nd edition 2012 and refers to Regulation No 82 that issued by Minister of Health No. 492 / Menkes / Per / IV / 2010.The results showed that the Limun river has undergone chemical changes in physical characteristics. These symptoms can be seen from the discoloration of clear water in the river before the mine becomes brownish after mining, based on graphic of muddiness concentration: pH, TSS, TDS Cu, Pb, Zn, Mn, Hg have seen that  the illegal miner which used amalgamation caused deterioration in water quality, data from 2009 to 2015 Limun river and surrounding areas continue to experience a decrease in water quality. The decreasing of water quality showed in the TSS parameter which found in the area is to high based on  the standard of water quality class II pp number 82 of 2010. An increase in the value of average concentrations of mercury in the Batang Limun river before mine 0,18ppb (0.00018 mg / l) into 0,3ppb (0.0003 mg / l) on the river after the mine. The increase was affected by the mining activities and the value is still below the air quality standard Grade II pp numbers 82 years 2010, although the value is still below with the standards quality standard, the mercury levels in water should still be a major concern because if it accumulates continuously in the water levels will increase and will be bad for health. In contrast to the concentration of mercury in sediments that have a higher value is 153 ppb (0,513ppm ) .Key Words :   Water Quality, Limun River, Mercury, Illegal gold mining


Sign in / Sign up

Export Citation Format

Share Document