transactivation assay
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 0)

Pharmacology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Atsuhito Kubota ◽  
Masaru Terasaki ◽  
Rie Takai ◽  
Masaki Kobayashi ◽  
Ryuta Muromoto ◽  
...  

<b><i>Introduction:</i></b> 5-Aminosalicylic acid (5-ASA) is widely used as a key drug in inflammatory bowel disease. It has been recently reported that 5-ASA induces CD4 + Foxp3 + regulatory T cells (Tregs) in the colon via the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that regulates inflammation. However, the role of 5-ASA as an AhR agonist that induces Tregs in the spleen remains unknown. <b><i>Methods:</i></b> In the present study, we investigated these themes using an AhR-mediated transactivation assay and flow cytometry analysis. The experiments were conducted by using DR-EcoScreen cells and C57BL/6 mice. <b><i>Results:</i></b> The DR-EcoScreen cell-based transactivation assay revealed that 5-ASA acted as a weak AhR agonist at concentrations of ≥300 μM (1.31–1.45-fold), and that a typical AhR agonist, 2,3,7,8-tetrachlorodibenzo-<i>p</i>-dioxin (TCDD), activated AhR at a concentration of 0.1 nM (22.8-fold). In addition, the treatment of mouse splenic cells with 300 μM 5-ASA in a primary culture assay significantly induced CD4+CD25 + Foxp3 + Tregs (control vs. 5-ASA: 9.0% vs. 12.65%, <i>p</i> &#x3c; 0.05), while 0.1 nM TCDD also showed significant induction of Tregs (control vs. TCDD: 9.0% vs. 14.1%, <i>p</i> &#x3c; 0.05). Interestingly, this induction was eliminated by co-treatment with an AhR antagonist, CH-223191. <b><i>Discussion:</i></b> These results suggest that 5-ASA is a weak agonist of AhR and thereby induces Tregs in spleen cells. Our findings may provide useful insights into the mechanism by which 5-ASA regulates inflammation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Na Xu ◽  
Lin Meng ◽  
Lin Song ◽  
Xiaoxu Li ◽  
Shasha Du ◽  
...  

Secondary wall-associated NAC (SWN) genes are a subgroup of NAC (NAM, ATAF, and CUC) transcription factors (TF) that play a key role in regulating secondary cell wall biosynthesis in plants. However, this gene family has not been systematically characterized, and their potential roles in response to hormones are unknown in Nicotiana tabacum. In this study, a total of 40 SWN genes, of which 12 from Nicotiana tomentosiformis, 13 from Nicotiana sylvestris, and 15 from Nicotiana tabacum, were successfully identified. The 15 SWNs from Nicotiana tabacum were further classified into three groups, namely, vascular-related NAC domain genes (NtVNDs), NAC secondary wall thickening promoting factor genes (NtNSTs), and secondary wall-associated NAC domain genes (NtSNDs). The protein characteristic, gene structure, and chromosomal location of 15 NtSWNs (also named Nt1 to Nt15) were also analyzed. The NtVND and NtNST group genes had five conserved subdomains in their N-terminal regions and a motif (LP[Q/x] L[E/x] S[P/A]) in their diverged C- terminal regions. Some hormones, dark and low-temperature related cis-acting elements, were significantly enriched in the promoters of NtSWN genes. A comprehensive expression profile analysis revealed that Nt4 and Nt12 might play a role in vein development. Others might be important for stem development. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that in the NtNST group, genes such as Nt7, Nt8, and Nt13 were more sensitive than the genes in NtVND and NtSND groups under abiotic stress conditions. A transactivation assay further suggested that Nt7, Nt8, and Nt13 showed a significant transactivation activity. Overall, SWN genes were finally identified and characterized in diploid and tetraploid tobacco, revealing new insights into their evolution, variation, and homology relationships. Transcriptome, cis-acting element, qRT-PCR, and transactivation assay analysis indicated the roles in hormonal and stress responses, which provided further resources in molecular mechanism and genetic improvement.


2020 ◽  
Vol 178 (2) ◽  
pp. 281-301
Author(s):  
Chad Deisenroth ◽  
Danica E DeGroot ◽  
Todd Zurlinden ◽  
Andrew Eicher ◽  
James McCord ◽  
...  

Abstract The U.S. EPA Endocrine Disruptor Screening Program utilizes data across the ToxCast/Tox21 high-throughput screening (HTS) programs to evaluate the biological effects of potential endocrine active substances. A potential limitation to the use of in vitro assay data in regulatory decision-making is the lack of coverage for xenobiotic metabolic processes. Both hepatic- and peripheral-tissue metabolism can yield metabolites that exhibit greater activity than the parent compound (bioactivation) or are inactive (bioinactivation) for a given biological target. Interpretation of biological effect data for both putative endocrine active substances, as well as other chemicals, screened in HTS assays may benefit from the addition of xenobiotic metabolic capabilities to decrease the uncertainty in predicting potential hazards to human health. The objective of this study was to develop an approach to retrofit existing HTS assays with hepatic metabolism. The Alginate Immobilization of Metabolic Enzymes (AIME) platform encapsulates hepatic S9 fractions in alginate microspheres attached to 96-well peg lids. Functional characterization across a panel of reference substrates for phase I cytochrome P450 enzymes revealed substrate depletion with expected metabolite accumulation. Performance of the AIME method in the VM7Luc estrogen receptor transactivation assay was evaluated across 15 reference chemicals and 48 test chemicals that yield metabolites previously identified as estrogen receptor active or inactive. The results demonstrate the utility of applying the AIME method for identification of false-positive and false-negative target assay effects, reprioritization of hazard based on metabolism-dependent bioactivity, and enhanced in vivo concordance with the rodent uterotrophic bioassay. Integration of the AIME metabolism method may prove useful for future biochemical and cell-based HTS applications.


2020 ◽  
Vol 182 ◽  
pp. 109110
Author(s):  
Seok-Hee Lee ◽  
Hyeyeong Seo ◽  
Hee-Seok Lee ◽  
Yooheon Park

2019 ◽  
Vol 32 (4) ◽  
pp. 698-707
Author(s):  
Markus Brinkmann ◽  
Bogdan Barz ◽  
Danielle Carrière ◽  
Mirna Velki ◽  
Kilian Smith ◽  
...  

PPAR Research ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Natália Bernardi Videira ◽  
Fernanda Aparecida Heleno Batista ◽  
Artur Torres Cordeiro ◽  
Ana Carolina Migliorini Figueira

Peroxisome proliferator-activated receptor beta/delta (PPARß/δ) is considered a therapeutic target for metabolic disorders, cancer, and cardiovascular diseases. Here, we developed one pipeline for the screening of PPARß/δ agonists, which reduces the cost, time, and false-positive hits. The first step is an optimized 3-day long cellular transactivation assay based on reporter-gene technology, which is supported by automated liquid-handlers. This primary screening is followed by a confirmatory transactivation assay and by two biophysical validation methods (thermal shift assay (TSA) and (ANS) fluorescence quenching), which allow the calculation of the affinity constant, giving more information about the selected hits. All of the assays were validated using well-known commercial agonists providing trustworthy data. Furthermore, to validate and test this pipeline, we screened a natural extract library (560 extracts), and we found one plant extract that might be interesting for PPARß/δ modulation. In conclusion, our results suggested that we developed a cheaper and more robust pipeline that goes beyond the single activation screening, as it also evaluates PPARß/δ tertiary structure stabilization and the ligand affinity constant, selecting only molecules that directly bind to the receptor. Moreover, this approach might improve the effectiveness of the screening for agonists that target PPARß/δ for drug development.


2016 ◽  
Vol 60 ◽  
pp. 156-166 ◽  
Author(s):  
Seunghan Sun ◽  
Eun-Jung Park ◽  
Yun-Ho Choi ◽  
Hee-Seok Lee ◽  
Byung Yoon Ahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document