scholarly journals Cellular and Biophysical Pipeline for the Screening of Peroxisome Proliferator-Activated Receptor Beta/Delta Agonists: Avoiding False Positives

PPAR Research ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Natália Bernardi Videira ◽  
Fernanda Aparecida Heleno Batista ◽  
Artur Torres Cordeiro ◽  
Ana Carolina Migliorini Figueira

Peroxisome proliferator-activated receptor beta/delta (PPARß/δ) is considered a therapeutic target for metabolic disorders, cancer, and cardiovascular diseases. Here, we developed one pipeline for the screening of PPARß/δ agonists, which reduces the cost, time, and false-positive hits. The first step is an optimized 3-day long cellular transactivation assay based on reporter-gene technology, which is supported by automated liquid-handlers. This primary screening is followed by a confirmatory transactivation assay and by two biophysical validation methods (thermal shift assay (TSA) and (ANS) fluorescence quenching), which allow the calculation of the affinity constant, giving more information about the selected hits. All of the assays were validated using well-known commercial agonists providing trustworthy data. Furthermore, to validate and test this pipeline, we screened a natural extract library (560 extracts), and we found one plant extract that might be interesting for PPARß/δ modulation. In conclusion, our results suggested that we developed a cheaper and more robust pipeline that goes beyond the single activation screening, as it also evaluates PPARß/δ tertiary structure stabilization and the ligand affinity constant, selecting only molecules that directly bind to the receptor. Moreover, this approach might improve the effectiveness of the screening for agonists that target PPARß/δ for drug development.

2017 ◽  
Vol 1 (6) ◽  
pp. 524-537 ◽  
Author(s):  
Guillaume Wettstein ◽  
Jean-Michel Luccarini ◽  
Laurence Poekes ◽  
Patrick Faye ◽  
Francine Kupkowski ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11497
Author(s):  
Brigitte Sibille ◽  
Isabelle Mothe-Satney ◽  
Gwenaëlle Le Menn ◽  
Doriane Lepouse ◽  
Sébastien Le Garf ◽  
...  

Synthetic ligands of peroxisome-proliferator-activated receptor beta/delta (PPARβ/δ) are being used as performance-enhancing drugs by athletes. Since we previously showed that PPARβ/δ activation affects T cell biology, we wanted to investigate whether a specific blood T cell signature could be employed as a method to detect the use of PPARβ/δ agonists. We analyzed in primary human T cells the in vitro effect of PPARβ/δ activation on fatty acid oxidation (FAO) and on their differentiation into regulatory T cells (Tregs). Furthermore, we conducted studies in mice assigned to groups according to an 8-week exercise training program and/or a 6-week treatment with 3 mg/kg/day of GW0742, a PPARβ/δ agonist, in order to (1) determine the immune impact of the treatment on secondary lymphoid organs and to (2) validate a blood signature. Our results show that PPARβ/δ activation increases FAO potential in human and mouse T cells and mouse secondary lymphoid organs. This was accompanied by increased Treg polarization of human primary T cells. Moreover, Treg prevalence in mouse lymph nodes was increased when PPARβ/δ activation was combined with exercise training. Lastly, PPARβ/δ activation increased FAO potential in mouse blood T cells. Unfortunately, this signature was masked by training in mice. In conclusion, beyond the fact that it is unlikely that this signature could be used as a doping-control strategy, our results suggest that the use of PPARβ/δ agonists could have potential detrimental immune effects that may not be detectable in blood samples.


Sign in / Sign up

Export Citation Format

Share Document