decoupling algorithm
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3185
Author(s):  
Dachuan Yu ◽  
Niancheng Zhou ◽  
Yongjie Luo ◽  
Le Dong ◽  
Zan Jia

In recent years, cross-platform co-simulation has become an important development direction of the real-time simulation of power systems. Model segmentation is at the core of the realization of cross-platform joint simulation and parallel real-time simulation of these systems. In essence, it is based on the deep application of a system-decoupling algorithm. In order to solve problems that a single interface cannot, it considers the data interaction of large- and small-step systems at the same time This paper proposes an improved joint-simulation strategy based on the model-segmentation method for the cross-platform joint-simulation technology of a large-scale, flexible direct-power grid sent by the wind farms of RT-lab and Hypersim. Firstly, by studying several common interface algorithms in the current project, the adaptability of different interface algorithms is analyzed. Secondly, the problem of high-frequency oscillation caused by the inductance-decoupling algorithm is improved, and an improved segmentation-model algorithm is proposed. Finally, according to the adaptability, each interface algorithm is applied to the wind-power-based, flexible direct-transmission, dual-platform simulation model that was built for this study. The simulation results verify the feasibility of the improved interface in system decoupling and platform interfacing, and indicate the significantly improved accuracy and stability of the system.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiangchuan Gao ◽  
Xupeng Zhang ◽  
Linlin Duan ◽  
Kexian Gong ◽  
Peng Sun ◽  
...  

In satellite communication, carrier parameter estimation usually uses a serial structure, and the accuracy of frequency offset estimation (FOE) will greatly affect the accuracy of phase offset estimation (POE). A new carrier synchronization mode (NCSM) can realize the decoupling of carrier FOE and POE to a certain extent, but this mode is based on multibase phase shift keying (MPSK) modulation analysis, the decoupling performance is poor when uses in amplitude phase shift keying (APSK) modulation, and the decoupling performance of NCSM has a low tolerance of frequency offset. An improved carrier parameter estimation decoupling technique is proposed to solve these problems. The simulation results show that, compared with the original method, under the premise of ensuring the accuracy of carrier parameter estimation, the proposed method is more robust to the modulation mode, the POE has stronger antioffset ability, and the normalized FOE range has been significantly enhanced.


Author(s):  
Zeyuan Liu ◽  
Mei Chen ◽  
Zhi Liang

In order to solve the coupling between torque and suspended force of the traditional bearingless switched reluctance motor (BSRM), a bearingless switched reluctance motor with hybrid-rotor (HBSRM) is proposed in this paper. The HBSRM discussed in the paper has a twelve-pole stator and an eight-pole hybrid-rotor composed of a cylindrical rotor and a salient rotor. The magnetic pulling force between cylindrical rotor and stator is used to independently levitate the shaft, and that between salient rotor and stator is used to separately rotate the rotor. So, the HBSRM not only breaks the restriction of the effective output region between torque and suspended force in the traditional BSRM, but also facilitates the decoupling algorithm design and simplifies the levitation control of this bearingless motor. Firstly, the topology, operating mechanism and mathematical model of the proposed HBSRM are introduced respectively. Then the no-load decoupling control and torque ripple of the traditional BSRM and HBSRM are compared. Moreover, the load decoupling control characteristics of HBSRM are presented and verified by simulation analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Jie Chen ◽  
Kai Xiao ◽  
Kai You ◽  
Xianguo Qing ◽  
Fang Ye ◽  
...  

For the large-scale search and rescue (S&R) scenarios, the centralized and distributed multi-UAV multitask assignment algorithms for multi-UAV systems have the problems of heavy computational load and massive communication burden, which make it hard to guarantee the effectiveness and convergence speed of their task assignment results. To address this issue, this paper proposes a hierarchical task assignment strategy. Firstly, a model decoupling algorithm based on density clustering and negotiation mechanism is raised to decompose the large-scale task assignment problem into several nonintersection and complete small-scale task assignment problems, which effectively reduces the required computational amount and communication cost. Then, a cluster head selection method based on multiattribute decision is put forward to select the cluster head for each UAV team. These cluster heads will communicate with the central control station about the latest assignment information to guarantee the completion of S&R mission. At last, considering that a few targets cannot be effectively allocated due to UAVs’ limited and unbalanced resources, an auction-based task sharing scheme among UAV teams is presented to guarantee the mission coverage of the multi-UAV system. Simulation results and analyses comprehensively verify the feasibility and effectiveness of the proposed hierarchical task assignment strategy in large-scale S&R scenarios with dispersed clustering targets.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 585
Author(s):  
Yunjia Li ◽  
Weitao Dou ◽  
Chenyuan Zhou ◽  
Xinyi Wang ◽  
Aijun Yang ◽  
...  

A miniaturized reliability test system for microdevices with controlled environmental parameters is presented. The system is capable of measuring key electrical parameters of the microdevices while controlling the environmental conditions around the microdevices. The test system is compact and thus can be integrated with standard test equipment for microdevices. By using a feed-forward decoupling algorithm, the presented test system is capable of generating a temperature range of 0–120 °C and a humidity range of 20–90% RH (0–55 °C), within a small footprint and weight. The accuracy for temperature and humidity control is ±0.1 °C and ±1% RH (30 °C), respectively. The functionality of the proposed test system is verified by integrating it with a piezo shaker to test the environmental reliability of an electromagnetic vibration energy harvester. The proposed system can be used as a proof-of-technology platform for characterizing the performance of microdevices with controlled environmental parameters.


2021 ◽  
Author(s):  
Zheng Wei ◽  
Kui Hua ◽  
Lei Wei ◽  
Shining Ma ◽  
Rui Jiang ◽  
...  

AbstractDiscovering DNA regulatory sequence motifs and their relative positions are vital to understand the mechanisms of gene expression regulation. Such complicated motif grammars are difficult to be summarized from shallow models. Although Deep Convolutional Neural Network (DCNN) achieved great success in annotating cis-regulatory elements, few combinatorial motif grammars have been accurately interpreted due to the mixed signal in DCNN. To address this problem, we proposed NeuronMotif, a general backward decoupling algorithm, to reveal the homo-/hetero-typic motif combinations and arrangements embedded in convolutional neurons. We applied NeuronMotif on several widely-used DCNN models. Many uncovered motif grammars of deep convolutional neurons are supported by literature or ATAC-seq footprinting. We further diagnosed the sick neurons that are sensitive to adversarial noises, which can guide DCNN architecture optimization for better prediction performance and motif feature extraction. Overall, NeuronMotif enables decoding cis-regulatory codes from deep convolutional neurons and understanding DCNN from a novel perspective.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 245
Author(s):  
Stefano Fabbri ◽  
Klaus Schuhmacher ◽  
Matthias Nienhaus ◽  
Emanuele Grasso

This paper presents an improvement of sensorless techniques based on anisotropy for the estimation of the electrical angular position of synchronous machines by means of an iterative algorithm. The presented method reduces the effect of the fourth saliency harmonics on the measured signals avoiding the use of an observer or filter, thus, no additional dynamics are introduced on the system. Instead, a static algorithm based on iterative steps is proposed, minimizing the angular position error. The algorithm is presented and applied using the DFC (Direct Flux Control) technique but it is not limited to this choice. The advantages and limitations of this method are presented within this paper. The proof of the algorithm convergence is given. Simulations and experimental tests are performed in order to prove the effectiveness of the proposed algorithm.


2021 ◽  
Vol 36 (8) ◽  
pp. 953-962
Author(s):  
Chenjiang Guo ◽  
Yuteng Gao ◽  
Wencan Peng ◽  
Min Wang ◽  
Jun Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document