cystine knot
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 22)

H-INDEX

48
(FIVE YEARS 5)

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuxin Zhang ◽  
Fengwu Chen ◽  
Aizhen Yang ◽  
Xiaoying Wang ◽  
Yue Han ◽  
...  

Abstract Background Type 3 von Willebrand disease (VWD) exhibits severe hemorrhagic tendency with complicated pathogenesis. The C-terminal cystine knot (CTCK) domain plays an important role in the dimerization and secretion of von Willebrand factor (VWF). The CTCK domain has four intrachain disulfide bonds including Cys2724-Cys2774, Cys2739-Cys2788, Cys2750-Cys2804 and Cys2754-Cys2806, and the single cysteine mutation in Cys2739-Cys2788, Cys2750-Cys2804 and Cys2754-Cys2806 result in type 3 VWD, demonstrating the crucial role of these three disulfide bonds in VWF biosynthesis, however, the role of the remaining disulfide bond Cys2724-Cys2774 remains unclear. Method and results In this study, by the next-generation sequencing we found a missense mutation a c.8171G>A (C2724Y) in the CTCK domain of VWF allele in a patient family with type 3 VWD. In vitro, VWF C2724Y protein was expressed normally in HEK-293T cells but did not form a dimer or secrete into cell culture medium, suggesting that C2724 is critical for the VWF dimerization, and thus for VWF multimerization and secretion. Conclusions Our findings provide the first genetic evidence for the important role of Cys2724-Cys2774 in VWF biosynthesis and secretion. Therefore, all of the four intrachain disulfide bonds in CTCK monomer contribute to VWF dimerization and secretion.


2021 ◽  
Vol 22 (19) ◽  
pp. 10888
Author(s):  
Ho Am Jang ◽  
Bharat Bhusan Patnaik ◽  
Maryam Ali Mohammadie Kojour ◽  
Bo Bae Kim ◽  
Young Min Bae ◽  
...  

The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses of insects against Gram-positive bacteria and fungi. In this study, the open reading frame (ORF) sequence of Spätzle-like from T. molitor (TmSpz-like) identified from the RNA sequencing dataset was cloned and sequenced. The 885-bp TmSpz-like ORF encoded a polypeptide of 294 amino acid residues. TmSpz-like comprised a cystine knot domain with six conserved cysteine residues that formed three disulfide bonds. Additionally, TmSpz-like exhibited the highest amino acid sequence similarity with T. castaneum Spätzle (TcSpz). In the phylogenetic tree, TmSpz-like and TcSpz were located within a single cluster. The expression of TmSpz-like was upregulated in the Malpighian tubules and gut tissues of T. molitor. Additionally, the expression of TmSpz-like in the whole body and gut of the larvae was upregulated at 24 h post-E. coli infection. The results of RNA interference experiments revealed that TmSpz-like is critical for the viability of E. coli-infected T. molitor larvae. Eleven AMP-encoding genes were downregulated in the E. coli-infected TmSpz-like knockdown larvae, which suggested that TmSpz-like positively regulated these genes. Additionally, the NF-κB-encoding genes (TmDorX1, TmDorX2, and TmRelish) were downregulated in the E. coli-infected TmSpz-like knockdown larvae. Thus, TmSpz-like plays a critical role in the regulation of AMP production in T. molitor in response to E. coli infection.


iScience ◽  
2021 ◽  
pp. 103220
Author(s):  
Xinxin Gao ◽  
Ann De Mazière ◽  
Rhiannon Beard ◽  
Judith Klumperman ◽  
Rami N. Hannoush

Author(s):  
Roland Hellinger ◽  
Edin Muratspahić ◽  
Seema Devi ◽  
Johannes Koehbach ◽  
Mina Vasileva ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 621
Author(s):  
Tadashi Kimura

Inhibitor cystine knot (ICK) peptides are knotted peptides with three intramolecular disulfide bonds that affect several types of ion channels. Some are proteolytically stable and are promising scaffolds for drug development. GTx1-15 is an ICK peptide that inhibits the voltage-dependent calcium channel Cav3.1 and the voltage-dependent sodium channels Nav1.3 and Nav1.7. As a model molecule to develop an ICK peptide drug, we investigated several important pharmaceutical characteristics of GTx1-15. The stability of GTx1-15 in rat and human blood plasma was examined, and no GTx1-15 degradation was observed in either rat or human blood plasma for 24 h in vitro. GTx1-15 in blood circulation was detected for several hours after intravenous and intramuscular administration, indicating high stability in plasma. The thermal stability of GTx1-15 as examined by high thermal incubation and protein thermal shift assays indicated that GTx1-15 possesses high heat stability. The cytotoxicity and immunogenicity of GTx1-15 were examined using the human monocytic leukemia cell line THP-1. GTx1-15 showed no cytotoxicity or immunogenicity even at high concentrations. These results indicate that GTx1-15 itself is suitable for peptide drug development and as a peptide library scaffold.


2021 ◽  
Author(s):  
T. Jeffrey Cole ◽  
Michael S Brewer

Venom expressed by the nearly 50,000 species of spiders on Earth largely remains an untapped reservoir of a diverse array of biomolecules with potential for pharmacological and agricultural applications. A large fraction of the noxious components of spider venoms are a functionally diverse family of structurally related polypeptides with an inhibitor cystine knot (ICK) motif. The cysteine-rich nature of these toxins makes structural elucidation difficult, and most studies have focused on venom components from the small handful of medically relevant spider species such as the highly aggressive Brazilian wandering spider Phoneutria nigriventer. To alleviate difficulties associated with the study of ICK toxins in spiders, we devised a comprehensive approach to explore the evolutionary patterns that have shaped ICK functional diversification using venom gland transcriptomes and proteomes from phylogenetically distinct lineages of wandering spiders and their close relatives. We identified 626 unique ICK toxins belonging to seven topological elaborations. Phylogenetic tests of episodic diversification revealed distinct regions between cysteine residues that demonstrated differential evidence of positive or negative selection, which may have structural implications towards the specificity and efficacy of these toxins. Increased taxon sampling and whole genome sequencing will provide invaluable insights to further understand the evolutionary processes that have given rise to this diverse class of toxins.


2021 ◽  
Vol 84 (2) ◽  
pp. 395-407
Author(s):  
Tien T. Dang ◽  
Lai Y. Chan ◽  
Benjamin J. Tombling ◽  
Peta J. Harvey ◽  
Edward K. Gilding ◽  
...  

2021 ◽  
Author(s):  
Martine Darwish ◽  
Xinxin Gao ◽  
Whitney Shatz ◽  
Hong Li ◽  
May Lin ◽  
...  

Nanolipoprotein particles (NLPs) have been evaluated as an in vivo delivery vehicle for a variety of molecules of therapeutic interest. However, delivery of peptide-like drugs in combination with therapeutic Fabs...


2020 ◽  
Vol 83 (11) ◽  
pp. 3305-3314
Author(s):  
Bernhard Retzl ◽  
Roland Hellinger ◽  
Edin Muratspahić ◽  
Meri E. F. Pinto ◽  
Vanderlan S. Bolzani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document