bohemian forest
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 11 (2) ◽  
pp. 91-100
Author(s):  
Zdenka Křenová ◽  
Zdeňka Chocholoušková ◽  
Vladimír Zýval

The Golden Trail, used for the transport of salt from alpine mines to the Czech Kingdom for centuries, was a crucial ancient trade route in the Central European region. The contemporary road I/4, copying the Golden Trail, plays the same role today. The I/4 is used year round with deicing salt, a common standard, applied for winter maintenance. Deicing salt is often used, even in sections where the I/4 passes through the Bohemian Forest and its protected areas. The effects of applying deicing salts on ecosystems in the region is well documented. In addition to many other effects, high concentrations of salt along the roads cause significant changes in plant communities. Plant species sensitive to salinity disappear and the abundance of halophytes increases. Roads are also trajectories for the migration of neophytes. Seeds or other propagules are transported with cargo or in car tires. In this paper, we present our findings on the pilgrimage of Plantago coronopus, a true halophyte, into the Bohemian Forest. We also describe the species’ colonisation strategy and human measures supporting its successful migration in a region of high conservation value.


2021 ◽  
Vol 13 (15) ◽  
pp. 3042
Author(s):  
Kateřina Gdulová ◽  
Jana Marešová ◽  
Vojtěch Barták ◽  
Marta Szostak ◽  
Jaroslav Červenka ◽  
...  

The availability of global digital elevation models (DEMs) from multiple time points allows their combination for analysing vegetation changes. The combination of models (e.g., SRTM and TanDEM-X) can contain errors, which can, due to their synergistic effects, yield incorrect results. We used a high-resolution LiDAR-derived digital surface model (DSM) to evaluate the accuracy of canopy height estimates of the aforementioned global DEMs. In addition, we subtracted SRTM and TanDEM-X data at 90 and 30 m resolutions, respectively, to detect deforestation caused by bark beetle disturbance and evaluated the associations of their difference with terrain characteristics. The study areas covered three Central European mountain ranges and their surrounding areas: Bohemian Forest, Erzgebirge, and Giant Mountains. We found that vertical bias of SRTM and TanDEM-X, relative to the canopy height, is similar with negative values of up to −2.5 m and LE90s below 7.8 m in non-forest areas. In forests, the vertical bias of SRTM and TanDEM-X ranged from −0.5 to 4.1 m and LE90s from 7.2 to 11.0 m, respectively. The height differences between SRTM and TanDEM-X show moderate dependence on the slope and its orientation. LE90s for TDX-SRTM differences tended to be smaller for east-facing than for west-facing slopes, and varied, with aspect, by up to 1.5 m in non-forest areas and 3 m in forests, respectively. Finally, subtracting SRTM and NASA DEMs from TanDEM-X and Copernicus DEMs, respectively, successfully identified large areas of deforestation caused by hurricane Kyril in 2007 and a subsequent bark beetle disturbance in the Bohemian Forest. However, local errors in TanDEM-X, associated mainly with forest-covered west-facing slopes, resulted in erroneous identification of deforestation. Therefore, caution is needed when combining SRTM and TanDEM-X data in multitemporal studies in a mountain environment. Still, we can conclude that SRTM and TanDEM-X data represent suitable near global sources for the identification of deforestation in the period between the time points of their acquisition.


Birds ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 127-137
Author(s):  
Siegfried Klaus ◽  
Tobias Ludwig

The population dynamics of Hazel Grouse were studied by presence/absence recording at stationary sites along fixed routes (110 km) in the central part of Šumava (Bohemian Forest, Czech Republic) from 1972 to 2019. The 100 km2 study area covered altitudes between 600 m (Rejštejn) and 1253 m above sea level (Mt. Sokol). Our database contained indices of Hazel Grouse occupancy: positive sites/visited sites for a yearly increasing number of Hazel Grouse occurrence sites (n = 134) for 48 years. We used a loglinear Poisson regression method to analyze the long-term population trend for Hazel Grouse in the study area. In the period from 1972 to 2006 we found a stable Hazel Grouse population (p = 0.83). From 2006–2007 to 2019, the population index dropped (−3.8% per year, p < 0.05). This decline is assumed to be influenced by habitat loss due to succession, resulting in older, more open forest stands, by strongly increasing forestry and windstorm “Kyrill”, followed by clear cutting, bark beetle damage, and the removal of pioneer trees in spruce plantations, which diminished buds and catkins, the dominant winter food of Hazel Grouse. The influence of disturbance by increasing tourist activities and/or predation is also discussed. Our results could help to optimize the conservation efforts for Hazel Grouse in the Bohemian Forest.


2021 ◽  
Author(s):  
Gabriela Florescu ◽  
Petr Kuneš ◽  
Willy Tinner ◽  
Marco Heurich ◽  
Walter Finsinger ◽  
...  

&lt;p&gt;Long-term perspectives on disturbance dynamics are important for the conservation of protected areas, yet restoration and conservation strategies in the Bohemian-Bavarian Forest Mountains do not consider the long-term role and patterns of forest fire, which is still deemed a negligible ecosystem disturbance in Central Europe. The scarcity of macroscopic charcoal studies in this area has likely hampered a complete understanding of local fire regime dynamics and its legacies in the present forest structure and composition. Here we used macroscopic charcoal (number, area and morphology of charred particles) and pollen analysis to investigate high resolution spatial and temporal patterns in Holocene fire regimes in the Bavarian-Bohemian Forest. We explored the relationship between changing forest composition dynamics and the influence topography had on spatial patterns of biomass burning. For this, we selected three lacustrine sites (two new, one published), located along a 30 km longitudinal transect within the studied area, at similar elevations in the mixed forest belt, with opposite (north vs. south) aspects. Results showed similar changes in biomass burning, fire frequency and peak magnitude at all sites, with a maximum during the early Holocene when fire resistant taxa (&lt;em&gt;Pinus&lt;/em&gt; and &lt;em&gt;Betula&lt;/em&gt;) dominated. Fire frequency decreased by half with the expansion of more fire-sensitive taxa (e.g., &lt;em&gt;Picea&lt;/em&gt; and &lt;em&gt;Fagus&lt;/em&gt;) during the mid-Holocene and reached a second maximum in the late Holocene, parallel with sustained increases in anthropogenic pollen indicators. We found a close north-south correspondence in the succession of fire patterns, i.e., fine-scale changes in biomass burning in the Bavarian Forest site (south-facing catchment) occurred around the same time with those observed at the Bohemian Forest sites (predominantly north-facing catchments), and these changes mirrored the Holocene dynamics of the main forest taxa. For example, the lowest biomass burning and peak magnitude intervals marked the beginning of &lt;em&gt;Picea abies&lt;/em&gt; expansion at ~ 9 ka BP, &lt;em&gt;Fagus sylvatica&lt;/em&gt; expansion at ~6 ka and &lt;em&gt;Abies alba&lt;/em&gt; expansion at ~5 ka BP. Furthermore, we found a direct relationship between the abundance of charred morphotypes of conifer needles and deciduous leaves and the dominance of pine and birch in our pollen records, and a close correspondence between the abundance of non-woody charcoal morphotypes and pollen-derived landscape openness. Non-woody charcoal morphotypes dominated the charcoal records in the Early Holocene at the peak of biomass burning, whereas the abundance of woody morphotypes peaked around 6-8 ka BP and over the last millennium and their proportion in total charcoal influx increased starting 4 ka BP. Our study enables a better understanding of past and present fire regimes in the Bavarian-Bohemian Forest Mountains and highlights the need to consider the effects of fire as part of climate-change forest conservation strategies.&lt;/p&gt;


2021 ◽  
Author(s):  
Daniel Vondrák ◽  
Gunther Kletetschka ◽  
Eva Svecova ◽  
Jolana Hruba ◽  
Richard Štorc ◽  
...  

&lt;p&gt;Near 12,850 cal. yr. BP, the Younger Dryas cooling (YD) abruptly reversed the warming trend from the last glacial to the present interglacial at high northern latitudes. Subsequent YD-onset-related changes, including hydroclimate shifts, affected ecosystems and human societies worldwide. The main YD trigger &amp;#8211; e.g., a massive meltwater input into the North Atlantic Ocean, volcanic gas aerosols from the cataclysmic Laacher See (LS) eruption in the Volcanic Eifel, Germany, or an extraterrestrial body impact or airburst &amp;#8211; remains widely debated and unclear. We have obtained lake sediment cores from three sites located in the Bohemian Forest Mts., Czechia-Germany-Austria border area (distance of 450&amp;#8211;470 km from the LS volcanic crater). The characteristic LS tephra glass shards were documented in all three cores using X-ray fluorescence scanning, magnetic susceptibility measurements, and direct observation by scanning electron microscopy, and their concentrations were quantified by a TESCAN Integrated Mineral Analyzer (TIMA). Our geochemical results show the closest match with the so-called MLST-B phreatomagmatic phase of the LS eruption. Moreover, a significant amount of LS-(crypto)tephra-related phosphorus (up to 0.15%), often the limiting nutrient in both terrestrial and freshwater ecosystems, was found in the sediments. The discovery of the LS volcanic ash in the Bohemian Forest points to a wider distribution of this (crypto)tephra than has been known so far (evident transport also in the eastern direction). It opens up new potential for tephrochronologically supported research of Late-glacial sediments in eastern Central Europe and exploring the role of the event in human prehistory. In addition to the LS cryptotephra, we observed magnetically extracted iron-rich microspherules with signs of high-temperature melting and quenching in all studied sediment cores. Their maxima (3&amp;#8211;36 objects per 1 g of dry sediment) were situated 2.2&amp;#8211;3.1 cm above peaks in the LS tephra shard concentrations. Such exotic objects were reported from numerous sites on several continents where more impact-related proxies were documented by proponents of the YD impact hypothesis. Based on this evidence, we hypothesize that the Aller&amp;#248;d-Younger Dryas transition in Central Europe was likely affected by more than one extreme event. The LS eruption was followed by an event during which the iron-rich microspherules were formed. The ongoing study is supported by the Czech Grant Foundation (20-08294S &amp;#8211; PROGRESS).&lt;/p&gt;


Author(s):  
Siegfried Klaus ◽  
Tobias Ludwig

The population dynamics of Hazel Grouse was studied by presence/ absence recording at stationary sites along fixed routes (110 km) during 1972-2019 in the central part of the Bohemian Forest (&Scaron;umava, Czech Republic). The 100-km&sup2; study area covered altitudes between 600 m (Rejstejn) and 1,253 m a.s.l., (mount Sokol). Our data base contained indices of Hazel Grouse occupancy: positive sites/ controlled sites for a yearly increasing number of Hazel Grouse occurrence sites (N = 134) for 48 years. We used a loglinear Poisson-regression method to analyze the long-term population trend for Hazel Grouse in the study area. In the period 1972 to 2006 we found a stable Hazel Grouse population (p = 0.83). From 2006-2007 to 2019, the population index dropped (-3.8% per year, p &amp;lt; 0.05) for the last 13 years. This decline is assumed to be influenced by habitat loss due to succession resulting in older, more open forest stands, by strongly increasing forestry and windstorm &ldquo;Kyrill&rdquo; followed by clear cutting, bark-beetle damage, and removal of pioneer trees in spruce plantations, which diminished buds and catkins, the dominant winter food. The influence of disturbance by increasing touristic activities and/or predation is discussed. Our results could help to optimize conservation efforts for Hazel Grouse in the Bohemian Forest.


The Holocene ◽  
2021 ◽  
pp. 095968362098806
Author(s):  
Alice Moravcová ◽  
Anna Tichá ◽  
Vachel A Carter ◽  
Daniel Vondrák ◽  
Martina Čtvrtlíková ◽  
...  

In this study we aim to investigate millennial-scale dynamics of Isoëtes, a type of macrophyte well adapted to oligotrophic and clear-water lakes. Despite its wide distribution during the Early Holocene, nowadays Isoëtes is considered as vulnerable or critically endangered in many Central European countries. Using a multi-proxy palaeoecological reconstruction involving Isoëtes micro- and megaspores, pollen, plant macrofossils, macro-charcoal, diatoms and chironomids from four lakes (Prášilské jezero, Plešné jezero, Černé jezero, Rachelsee) located in the Bohemian Forest Ecosystem mountain region in Central Europe, we reconstruct Isoëtes dynamics and discuss how local environmental factors impacted its distribution and abundance during the Holocene. Our results show regionally concurrent patterns of Isoëtes colonisation across all lakes beginning 10,300–9300 cal yr BP, and substantially declining around 6400 cal yr BP. Results from Prášilské jezero imply that Isoëtes decline and collapse in this lake reflect gradual dystrophication that led to the browning of lake water. This is evidenced by a shift in diatom assemblages towards more acidophilous taxa dominated by Asterionella ralfsii and by a decrease in total chironomid abundance and taxa sensitive to low oxygen levels. Dystrophication of Prášilské jezero was linked with the immigration of the late-successional tree taxa ( Picea abies and later Fagus sylvatica and Abies alba), peatland expansion, and decreasing fire activity. Multi-site comparison of pollen records suggest that these vegetation-related environmental changes were common for the whole region. Our study demonstrates the sensitivity of Isoëtes to millennial-scale natural environmental changes within the surrounding lake catchment.


Sign in / Sign up

Export Citation Format

Share Document