fetal electrocardiograms
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256154
Author(s):  
Katerina Barnova ◽  
Radek Martinek ◽  
Rene Jaros ◽  
Radana Kahankova ◽  
Adam Matonia ◽  
...  

Non-invasive fetal electrocardiography appears to be one of the most promising fetal monitoring techniques during pregnancy and delivery nowadays. This method is based on recording electrical potentials produced by the fetal heart from the surface of the maternal abdomen. Unfortunately, in addition to the useful fetal electrocardiographic signal, there are other interference signals in the abdominal recording that need to be filtered. The biggest challenge in designing filtration methods is the suppression of the maternal electrocardiographic signal. This study focuses on the extraction of fetal electrocardiographic signal from abdominal recordings using a combination of independent component analysis, recursive least squares, and ensemble empirical mode decomposition. The method was tested on two databases, the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations and the PhysioNet Challenge 2013 database. The evaluation was performed by the assessment of the accuracy of fetal QRS complexes detection and the quality of fetal heart rate determination. The effectiveness of the method was measured by means of the statistical parameters as accuracy, sensitivity, positive predictive value, and F1-score. Using the proposed method, when testing on the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database, accuracy higher than 80% was achieved for 11 out of 12 recordings with an average value of accuracy 92.75% [95% confidence interval: 91.19–93.88%], sensitivity 95.09% [95% confidence interval: 93.68–96.03%], positive predictive value 96.36% [95% confidence interval: 95.05–97.17%] and F1-score 95.69% [95% confidence interval: 94.83–96.35%]. When testing on the Physionet Challenge 2013 database, accuracy higher than 80% was achieved for 17 out of 25 recordings with an average value of accuracy 78.24% [95% confidence interval: 73.44–81.85%], sensitivity 81.79% [95% confidence interval: 76.59–85.43%], positive predictive value 87.16% [95% confidence interval: 81.95–90.35%] and F1-score 84.08% [95% confidence interval: 80.75–86.64%]. Moreover, the non-invasive ST segment analysis was carried out on the records from the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database and achieved high accuracy in 7 from in total of 12 records (mean values μ < 0.1 and values of ±1.96σ < 0.1).



2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Adam Matonia ◽  
Janusz Jezewski ◽  
Tomasz Kupka ◽  
Michał Jezewski ◽  
Krzysztof Horoba ◽  
...  


PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0214357 ◽  
Author(s):  
Alexandra D. J. Hulsenboom ◽  
Kim M. J. Verdurmen ◽  
Rik Vullings ◽  
M. Beatrijs van der Hout–van der Jagt ◽  
Anneke Kwee ◽  
...  


2017 ◽  
Vol 11 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Angela Agostinelli ◽  
Ilaria Marcantoni ◽  
Elisa Moretti ◽  
Agnese Sbrollini ◽  
Sandro Fioretti ◽  
...  

Background: Indirect fetal electrocardiography is preferable to direct fetal electrocardiography because of being noninvasive and is applicable also during the end of pregnancy, besides labor. Still, the former is strongly affected by noise so that even R-peak detection (which is essential for fetal heart-rate evaluations and subsequent processing procedures) is challenging. Some fetal studies have applied the Pan-Tompkins’ algorithm that, however, was originally designed for adult applications. Thus, this work evaluated the Pan-Tompkins’ algorithm suitability for fetal applications, and proposed fetal adjustments and optimizations to improve it. Method: Both Pan-Tompkins’ algorithm and its improved version were applied to the “Abdominal and Direct Fetal Electrocardiogram Database” and to the “Noninvasive Fetal Electrocardiography Database” of Physionet. R-peak detection accuracy was quantified by computation of positive-predictive value, sensitivity and F1 score. Results: When applied to “Abdominal and Direct Fetal Electrocardiogram Database”, the accuracy of the improved fetal Pan-Tompkins’ algorithm was significantly higher than the standard (positive-predictive value: 0.94 vs. 0.79; sensitivity: 0.95 vs. 0.80; F1 score: 0.94 vs. 0.79; P<0.05 in all cases) on indirect fetal electrocardiograms, whereas both methods performed similarly on direct fetal electrocardiograms (positive-predictive value, sensitivity and F1 score all close to 1). Improved fetal Pan-Tompkins’ algorithm was found to be superior to the standard also when applied to “Noninvasive Fetal Electrocardiography Database” (positive-predictive value: 0.68 vs. 0.55, P<0.05; sensitivity: 0.56 vs. 0.46, P=0.23; F1 score: 0.60 vs. 0.47, P=0.11). Conclusion: In indirect fetal electrocardiographic applications, improved fetal Pan-Tompkins’ algorithm is to be preferred over the standard, since it provides higher R-peak detection accuracy for heart-rate evaluations and subsequent processing.



2017 ◽  
Vol 11 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Angela Agostinelli ◽  
Agnese Sbrollini ◽  
Luca Burattini ◽  
Sandro Fioretti ◽  
Francesco Di Nardo ◽  
...  

Background: Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography. Direct fetal electrocardiography (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of indirect fetal electrocardiography (acquired through abdominal electrodes) is limited by its poor signal quality. Objective: Aim of this study was to evaluate the suitability of the Segmented-Beat Modulation Method to denoise indirect fetal electrocardiograms in order to achieve a signal-quality at least comparable to the direct ones. Method: Direct and indirect recordings, simultaneously acquired from 5 pregnant women during labor, were filtered with the Segmented-Beat Modulation Method and correlated in order to assess their morphological correspondence. Signal-to-noise ratio was used to quantify their quality. Results: Amplitude was higher in direct than indirect fetal electrocardiograms (median:104 µV vs. 22 µV; P=7.66·10-4), whereas noise was comparable (median:70 µV vs. 49 µV, P=0.45). Moreover, fetal electrocardiogram amplitude was significantly higher than affecting noise in direct recording (P=3.17·10-2) and significantly in indirect recording (P=1.90·10-3). Consequently, signal-to-noise ratio was initially higher for direct than indirect recordings (median:3.3 dB vs. -2.3 dB; P=3.90·10-3), but became lower after denoising of indirect ones (median:9.6 dB; P=9.84·10-4). Eventually, direct and indirect recordings were highly correlated (median: ρ=0.78; P<10-208), indicating that the two electrocardiograms were morphologically equivalent. Conclusion: Segmented-Beat Modulation Method is particularly useful for denoising of indirect fetal electrocardiogram and may contribute to the spread of this noninvasive technique in the clinical practice.



Sign in / Sign up

Export Citation Format

Share Document