thermoacoustic refrigeration
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 2070 (1) ◽  
pp. 012220
Author(s):  
Debojit Roy ◽  
Sandip Ghosh

Abstract Thermoacoustic Refrigeration is a phenomenon in which cooling takes place by using high-intensity sound waves, which is gathering attention of many researchers in recent days. This alternative environment friendly technology could play an important role in near future. The paper is mainly an experimental case study on a thermoacoustic refrigeration system build in a laboratory environment with the commonly available materials. The setup was tested for various frequencies of sound to observe its effect on the drop of temperature. The refrigeration effect was also studied for various stack materials. It was observed that sinusoidal waves are better responsive to the production of the refrigeration effect. Moreover, the effect is more pronounced for paper-foil made stack.



Author(s):  
B. G. Prashantha ◽  
G. S. V. L. Narasimham ◽  
S. Seetharamu ◽  
K. Manjunatha

Thermoacoustic refrigeration is an emerging green, novel and promising alternate technology compared to vapor compression refrigerator systems for domestic cooling. It uses environmentally benign gases like air or helium or the mixture of inert gases as working substances and has no moving parts, no lubrication and no vibration. The cooler is designed and optimized with helium and air as refrigerants operating at 10[Formula: see text]bar with 3% drive ratio for the temperature difference of 28[Formula: see text]K and stack diameter of 200[Formula: see text]mm using linear thermoacoustic theory. In this paper, the effect of gas blockage (porosity) of the spiral-stack heat exchanger system ranging from 45% to 85% on the theoretical performance of the cooler is discussed. The one-third and one-fourth wavelength convergent–divergent resonator designs are optimized with air and helium as working substances, respectively, to improve performance and power density. The optimized coolers show best performance with 85% porosity. The theoretical results are validated with DeltaEC software simulation results. The simulation results show the coefficient of performance and cooling capacity of 0.93 and 219[Formula: see text]W for helium and of 0.50 and 139[Formula: see text]W for air, respectively, at the cold heat exchanger temperature of 0∘C.



2021 ◽  
Author(s):  
Philip Spoor ◽  
Deoras Prabhudharwadkar ◽  
Srinath Somu ◽  
Saumitra Saxena ◽  
Deanna Lacoste ◽  
...  

Abstract Thermoacoustics (TA) engines and refrigerators typically run on the Stirling cycle with acoustic networks and resonators replacing the physical pistons. Without moving parts, these TA machines achieve a reasonable fraction of Carnot’s efficiency. They are also scalable, from fractions of a Watt up to kW of cooling. Despite their apparent promise, TA devices are not in widespread use, because outside of a few niche applications, their advantages are not quite compelling enough to dislodge established technology. In the present study, the authors have evaluated a selected group of applications that appear suitable for utilization of industrial waste heat using TA devices and have arrived at a ranked order. The principal thought is to appraise whether thermoacoustics can be a viable path, from both an economic and energy standpoint, for carbon mitigation in those applications. The applications considered include cryogenic carbon capture for power plant exhaust gases, waste-heat powered air conditioning/water chilling for factories and office buildings, hydrogen liquefaction, and zero-boiloff liquid hydrogen (LH2) storage. Although the criteria used for evaluating the applications are somewhat subjective, the overall approach has been consistent, with the same set of criteria applied to each of them. Thermoeconomic analysis is performed to evaluate the system viability, together with overall consideration of a thermoacoustic device’s general nature, advantages, and limitations. Our study convincingly demonstrates that the most promising application is zero-boiloff liquid hydrogen storage, which is physically well-suited to thermoacoustic refrigeration and requires cooling at a temperature and magnitude not ideal for standard refrigeration methods. Waste-heat powered air conditioning ranks next in its potential to be a viable commercial application. The rest of the applications have been found to have relatively lower potentials to enter the existing commercial space.



Author(s):  
Mahmoud A. Alamir

Thermoacoustic engines and refrigerators have many advantages. They use environment-friendly working gases, their design is simple, and they can operate quietly. However, they have many design characteristics from geometric parameters and operating conditions. Besides this, they still have low efficiencies and performance. This paper summarises important considerations of the design and presents the state-of-the-art developments in thermoacoustic energy conversion devices. This includes recent studies and designs of the thermoacoustic refrigeration devices towards more efficient thermoacoustic engines and refrigerators. New insights into the design of resonators, the different sources of the power sources, the different stack geometries and working mediums were considered. The challenges that face the development of thermoacoustic devices were also discussed. Far too little attention has been paid to looking at these devices comprehensively. In further research, the use of neural networks and metadata as optimisation methods could be a means of significantly increasing the performance of these devices. There is also abundant room for further progress in enhancing oscillatory heat transfer. Moreover, further recommendations and studies were proposed for a better understanding of the interrelationship between the geometric parameters and operating conditions.



2020 ◽  
Vol 27 (9) ◽  
pp. 2754-2762
Author(s):  
Qing E ◽  
Feng Wu ◽  
Lin-gen Chen ◽  
Yi-nan Qiu


2020 ◽  
Vol 28 (03) ◽  
pp. 2050020
Author(s):  
B. G. Prashantha ◽  
D. R. Swamy ◽  
Bhimasen Soragaon ◽  
T. S. Nanjundeswaraswamy

Thermoacoustic refrigeration, a novel technology, uses eco-friendly gases like helium, air or the mixture of noble gases as working substances in the absence of moving parts. The design, optimization and analysis of thermoacoustic refrigerators using helium and air as oscillating gases are discussed. Pure helium is chosen since it is proven as the best and economical working gas compared to the alternate pure or the mixture of noble gases. Air is chosen since it is abundant in nature and the least cost of the pressurized dry air cylinders. The design optimization strategies discussed in this paper serve as a guide for aspiring researchers in the design and development of thermoacoustic coolers. Cooling power as a function of stack diameter is discussed. Theoretical results of the optimized coolers are compared with DeltaEC simulation results for validation and are in agreement with each other.



2019 ◽  
Vol 27 (03) ◽  
pp. 1950021
Author(s):  
N. A. Zolpakar ◽  
N. Mohd-Ghazali

Although the thermoacoustic refrigeration (TAR) system has been recognized as a potential alternative environmentally cooling system, the low coefficient of performance (COP) has yet to make it marketable. One major factor contributing towards the low COP is the fabrication method applied to the stack component which is the most important component in the TAR. In this paper, comparison of the performance of a (i) 3D printed stack, (ii) a hand fabricated Mylar stack and (iii) an off-the-shelf Celcor substrates stack has been done; these being based on optimized design parameters using Multi-Objective Genetic Algorithm (MOGA). The performance is determined from the temperature attained at the cold end of the stack and the temperature difference across the stack. Experimental results showed that the 3D printed stack has the best performance by achieving a temperature, [Formula: see text]C at the cold end and a temperature difference of [Formula: see text]C across the stack, about 60% of the designed temperature difference even though the fabricated 3D printed stack deviated from the optimal design due to fabrication constraint as compared to that of the Mylar stack which was closer to the optimal design. This 3D printing of the stack promises a big potential in the improvement of the TAR performance because of the consistency achievable with the precise dimensions of the stack.



2019 ◽  
Vol 64 (1) ◽  
pp. 8-10 ◽  
Author(s):  
Huizhi Wang ◽  
Limin Zhang ◽  
Guoyao Yu ◽  
Jianying Hu ◽  
Ercang Luo ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document