scholarly journals The generalized Wiener–Hopf equations for the elastic wave motion in angular regions

Author(s):  
Vito G. Daniele ◽  
Guido Lombardi

In this work, we introduce a general method to deduce spectral functional equations in elasticity and thus, the generalized Wiener–Hopf equations (GWHEs), for the wave motion in angular regions filled by arbitrary linear homogeneous media and illuminated by sources localized at infinity. The work extends the methodology used in electromagnetic applications and proposes for the first time a complete theory to get the GWHEs in elasticity. In particular, we introduce a vector differential equation of first-order characterized by a matrix that depends on the medium filling the angular region. The functional equations are easily obtained by a projection of the reciprocal vectors of this matrix on the elastic field present on the faces of the angular region. The application of the boundary conditions to the functional equations yields GWHEs for practical problems. This paper extends and applies the general theory to the challenging canonical problem of elastic scattering in angular regions.

Author(s):  
V. G. Daniele ◽  
G. Lombardi

In this work, we introduce a general method to deduce spectral functional equations and, thus, the generalized Wiener–Hopf equations (GWHEs) for wave motion in angular regions filled by arbitrary linear homogeneous media and illuminated by sources localized at infinity with application to electromagnetics. The functional equations are obtained by solving vector differential equations of first order that model the problem. The application of the boundary conditions to the functional equations yields GWHEs for practical problems. This paper shows the general theory and the validity of GWHEs in the context of electromagnetic applications with respect to the current literature. Extension to scattering problems by wedges in arbitrarily linear media in different physics will be presented in future works.


2019 ◽  
Vol 65 (3) ◽  
pp. 339-389
Author(s):  
A B Antonevich ◽  
T G Shagova

In this paper, we discuss methods and approaches for definition of multiplication of distributions, which is not defined in general in the classical theory. We show that this problem is related to the fact that the operator of multiplication by a smooth function is nonclosable in the space of distributions. We give the general method of construction of new objects called new distributions, or mnemofunctions, that preserve essential properties of usual distributions and produce algebras as well. We describe various methods of embedding of distribution spaces into algebras of mnemofunctions. All ideas and considerations are illustrated by the simplest example of the distribution space on a circle. Some effects arising in study of equations with distributions as coefficients are demonstrated by example of a linear first-order differential equation.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mehmet Şenol ◽  
İhsan Timuçin Dolapçı ◽  
Yiğit Aksoy ◽  
Mehmet Pakdemirli

The previously developed new perturbation-iteration algorithm has been applied to differential equation systems for the first time. The iteration algorithm for systems is developed first. The algorithm is tested for a single equation, coupled two equations, and coupled three equations. Solutions are compared with those of variational iteration method and numerical solutions, and a good agreement is found. The method can be applied to differential equation systems with success.


1865 ◽  
Vol 24 (1) ◽  
pp. 147-166 ◽  
Author(s):  
Tait

One of the grandest steps which has ever been made in Dynamical Science is contained in two papers, “On a General Method in Dynamics” contributed to the Philosophical Transactions for 1834 and 1835 by Sir W. R. Hamilton. It is there shown that the complete solution of any kinetical problem, involving the action of a given conservative system of forces, and constraint depending upon the reaction of smooth guiding curves or surfaces, also given, is reducible to the determination of a single quantity called the Characteristic Function of the motion. This quantity is to be found from a partial differential equation of the first order, and second degree; and it has been shown that, from any complete integral of this equation, all the circumstances of the motion may be deduced by differentiation. So far as I can discover, this method has not been applied to inverse problems, of the nature of the Brachistochrone for instance, where the object aimed at is essentially the determination of the constraint requisite to produce a given result. It is easy to see, however, that a large class of such questions may be treated successfully by a process perfectly analogous to that of Hamilton; though the characteristic function in such cases is not the same function (of the quantities determining the motion) as that of the Method of Varying Action.


1988 ◽  
Vol 11 (1) ◽  
pp. 49-63
Author(s):  
Andrzej Szalas

In this paper we deal with a well known problem of specifying abstract data types. Up to now there were many approaches to this problem. We follow the axiomatic style of specifying abstract data types (cf. e.g. [1, 2, 6, 8, 9, 10]). We apply, however, the first-order temporal logic. We introduce a notion of first-order completeness of axiomatic specifications and show a general method for obtaining first-order complete axiomatizations. Some examples illustrate the method.


Author(s):  
Sandip Moi ◽  
Suvankar Biswas ◽  
Smita Pal(Sarkar)

AbstractIn this article, some properties of neutrosophic derivative and neutrosophic numbers have been presented. This properties have been used to develop the neutrosophic differential calculus. By considering different types of first- and second-order derivatives, different kind of systems of derivatives have been developed. This is the first time where a second-order neutrosophic boundary-value problem has been introduced with different types of first- and second-order derivatives. Some numerical examples have been examined to explain different systems of neutrosophic differential equation.


2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Misir J. Mardanov ◽  
Yagub A. Sharifov ◽  
Yusif S. Gasimov ◽  
Carlo Cattani

This paper considers boundary value problem (BVP) for nonlinear first-order differential problems with multipoint and integral boundary conditions. A suitable Green function was constructed for the first time in order to reduce this problem into a corresponding integral equation. So that by using the Banach contraction mapping principle (BCMP) and Schaefer’s fixed point theorem (SFPT) on the integral equation, we can show that the solution of the multipoint problem exists and it is unique.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yun Xin ◽  
Xiaoxiao Cui ◽  
Jie Liu

Abstract The main purpose of this paper is to obtain an exact expression of the positive periodic solution for a first-order differential equation with attractive and repulsive singularities. Moreover, we prove the existence of at least one positive periodic solution for this equation with an indefinite singularity by applications of topological degree theorem, and give the upper and lower bounds of the positive periodic solution.


Sign in / Sign up

Export Citation Format

Share Document