dusty disks
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
◽  
K. Perraut ◽  
L. Labadie ◽  
J. Bouvier ◽  
F. Ménard ◽  
...  

2020 ◽  
Vol 901 (1) ◽  
pp. 7
Author(s):  
Zhaoming Gan ◽  
Brandon S. Hensley ◽  
Jeremiah P. Ostriker ◽  
Luca Ciotti ◽  
David Schiminovich ◽  
...  

2019 ◽  
Vol 887 (1) ◽  
pp. 6
Author(s):  
Areli Castrejon ◽  
Wladimir Lyra ◽  
Alexander J. W. Richert ◽  
Marc Kuchner
Keyword(s):  

Galaxies ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 83 ◽  
Author(s):  
Michaela Kraus

Stellar evolution theory is most uncertain for massive stars. For reliable predictions of the evolution of massive stars and their final fate, solid constraints on the physical parameters, and their changes along the evolution and in different environments, are required. Massive stars evolve through a variety of short transition phases, in which they can experience large mass-loss either in the form of dense winds or via sudden eruptions. The B[e] supergiants comprise one such group of massive transition objects. They are characterized by dense, dusty disks of yet unknown origin. In the Milky Way, identification and classification of B[e] supergiants is usually hampered by their uncertain distances, hence luminosities, and by the confusion of low-luminosity candidates with massive pre-main sequence objects. The extragalactic objects are often mistaken as quiescent or candidate luminous blue variables, with whom B[e] supergiants share a number of spectroscopic characteristics. In this review, proper criteria are provided, based on which B[e] supergiants can be unambiguously classified and separated from other high luminosity post-main sequence stars and pre-main sequence stars. Using these criteria, the B[e] supergiant samples in diverse galaxies are critically inspected, to achieve a reliable census of the current population.


2019 ◽  
Vol 882 (2) ◽  
pp. 107 ◽  
Author(s):  
W. Rujopakarn ◽  
E. Daddi ◽  
G. H. Rieke ◽  
A. Puglisi ◽  
M. Schramm ◽  
...  

Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 102 ◽  
Author(s):  
Raghvendra Sahai

It is widely believed that the dramatic transformation of the spherical outflows of AGB stars into the extreme aspherical geometries seen during the planetary nebula (PN) phase is linked to binarity and driven by the associated production of fast jets and central disks/torii. The key to understanding the engines that produce these jets and the jet-shaping mechanisms lies in the study of objects in transition between the AGB and PN phases. I discuss the results of our recent studies with high-angular-resolution (with ALMA and HST) and at high-energies (with GALEX, XMM-Newton and Chandra) of several such objects, which reveal new details of close binary interactions and high-speed outflows. These include two PPNe (the Boomerang Nebula and IRAS 16342-3814), and the late carbon star, V Hya. The Boomerang Nebula is notable for a massive, high-speed outflow that has cooled below the microwave background temperature, making it the coldest object in the Universe. IRAS 16342-3814 is the prime example of the class of water-fountain pre-planetary nebulae or PPNe (very young PPNe with high-velocity H 2 O masers) and shows the signature of a precessing jet. V Hya ejects high-speed bullets every 8.5 years associated with the periastron passage of a companion in an eccentric orbit. I discuss our work on AGB stars with strongly-variable high-energy (FUV, X-ray) emission, suggesting that these objects are in the early stages of binary interactions that result in the formation of accretion disks and jets.


2018 ◽  
Vol 14 (S345) ◽  
pp. 96-101
Author(s):  
Laura M. Pérez

AbstractPlanet formation takes place in the gaseous and dusty disks that surround young stars, known as protoplanetary disks. With the advent of sensitive observations and together with developments in theory, our field is making rapid progress in understanding how the evolution of protoplanetary disks takes place, from its inception to the end result of a fully-formed planetary system. In this review, I discuss how observations that trace both the dust and gas components of these systems inform us about their evolution, mass budget, and chemistry. Particularly, the process of disk evolution and planet formation will leave an imprint on the distribution of solid particles at different locations in a protoplanetary disk, and I focus on recent observational results at high angular resolution in the sub-millimeter regime, which have revealed a variety of substructures present in these objects.


Author(s):  
Raghvendra Sahai

It is widely believed that the dramatic transformation of the spherical outflows of AGB stars into the extreme aspherical geometries seen during the planetary nebula (PN) phase is linked to binarity and driven by the associated production of fast jets and central disks/torii. The key to understanding the engines that produce these jets and the jet-shaping mechanisms lies in the study of objects in transition between the AGB and PN phases. I discuss the results of our recent studies with high-angular-resolution (with ALMA & HST) and at high-energies (with GALEX, XMM-Newton & Chandra) of several such objects, which reveal new details of close binary interactions and high-speed outflows. These include two PPNe (the Boomerang Nebula and IRAS16342-3814), and the late carbon star, V Hya. The Boomerang is notable for a massive, high-speed outflow that has cooled below the microwave background temperature, making it the coldest object in the Universe. IRAS16342 is the prime example of the class of water-fountain PPNe (very young PPNe with high-velocity H2O masers) and shows the signature of a precessing jet. V Hya ejects high-speed bullets every 8.5 years associated with the periastron passage of a companion in an eccentric orbit. I discuss our work on AGB stars with strongly-variable high-energy (FUV, X-ray) emission, suggesting that these objects are in the early stages of binary interactions that result in the formation of accretion disks and jets.


2018 ◽  
Vol 613 ◽  
pp. A30
Author(s):  
F. Marin ◽  
P. A. Rojas Lobos ◽  
J. M. Hameury ◽  
R. W. Goosmann

Context. From stars to active galactic nuclei, many astrophysical systems are surrounded by an equatorial distribution of dusty material that is, in a number of cases, spatially unresolved even with cutting edge facilities. Aims. In this paper, we investigate if and how one can determine the unresolved and heterogeneous morphology of dust distribution around a central bright source using time-resolved polarimetric observations. Methods. We used polarized radiative transfer simulations to study a sample of circumnuclear dusty morphologies. We explored a grid of geometrically variable models that are uniform, fragmented, and density stratified in the near-infrared, optical, and ultraviolet bands, and we present their distinctive time-dependent polarimetric signatures. Results. As expected, varying the structure of the obscuring equatorial disk has a deep impact on the inclination-dependent flux, polarization degree and angle, and time lags we observe. We find that stratified media are distinguishable by time-resolved polarimetric observations, and that the expected polarization is much higher in the infrared band than in the ultraviolet. However, because of the physical scales imposed by dust sublimation, the average time lags of months to years between the total and polarized fluxes are important; these time lags lengthens the observational campaigns necessary to break more sophisticated, and therefore also more degenerated, models. In the ultraviolet band, time lags are slightly shorter than in the infrared or optical bands, and, coupled to lower diluting starlight fluxes, time-resolved polarimetry in the UV appears more promising for future campaigns. Conclusions. Equatorial dusty disks differ in terms of inclination-dependent photometric, polarimetric, and timing observables, but only the coupling of these different markers can lead to inclination-independent constraints on the unresolved structures. Even though it is complex and time consuming, polarized reverberation mapping in the ultraviolet-blue band is probably the best technique to rely on in this field.


Sign in / Sign up

Export Citation Format

Share Document