scholarly journals Identification of rock and fracture kinematics in high alpine rockwalls under the influence of elevation

2021 ◽  
Vol 9 (4) ◽  
pp. 977-994
Author(s):  
Daniel Draebing

Abstract. In alpine environments, tectonic processes, past glaciation and weathering processes fracture rock and prepare or trigger rockfalls, which are important processes of rock slope evolution and natural hazards. In this study, I quantify thermally and ice-induced rock and fracture kinematics and place these in the context of their role in producing rockfall and climate change. I conducted laboratory measurements on intact rock samples and installed temperature loggers and crackmeters at four rockwalls reaching from 2585 to 2935 m in elevation in the Hungerli Valley, Swiss Alps. My laboratory data show that thermal expansion followed three phases of rock kinematics, which resulted in a hysteresis effect. In the field, control crackmeters on intact rock reflected these temperature phases, and based on thermal expansion coefficients of these observed phases, I modelled thermal stress. Model results show that thermal stress magnitudes were predominantly below rock strengths. Crackmeters across fractures revealed fracture opening during cooling and reverse closing behaviour during warming on daily timescales. Elevation-dependent snow cover controlled the number of daily temperature changes and thermal stresses affecting both intact and fractured rock, while the magnitude is controlled by topographic factors influencing insolation. On a seasonal scale, slow ice-segregation-induced fracture opening can occur within lithology-dependent temperature regimes called frost cracking windows. Shear plane dipping controlled whether fractures opened or closed irreversibly with time due to thermally induced block crawling on an annual scale. Climate change will shorten snow duration and increase temperature extremes and will, therefore, affect the number and the magnitude of thermal changes and associated stresses. Earlier snowmelt in combination with temperature increase will shift the ice-induced kinematic processes to higher elevations. In conclusion, climate change will affect and change rock and fracture kinematics and, therefore, change rockfall patterns in alpine environments. Future work should quantify rockfall patterns and link these patterns to climatic drivers.

1985 ◽  
Vol 52 (4) ◽  
pp. 806-810 ◽  
Author(s):  
Y. Takao ◽  
M. Taya

A formulation to compute the effective thermal expansion coefficients (αc) of an anisotropic short fiber-reinforced composite and the thermal stress (σ) induced in and around the fiber is developed. The formulation is based on the Eshelby’s equivalent inclusion method. Main emphasis is placed on short Carbon fiber/Aluminum. The thermal stress due to a uniform temperature rise ΔT is computed at points just outside the fiber. The effects of various parameters on αc and σ are also investigated.


2005 ◽  
Vol 495-497 ◽  
pp. 1687-1692
Author(s):  
Wen-Hai Ye ◽  
Hans Georg Priesmeyer ◽  
Heinz Günter Brokmeier

Cu-Nb composites are characterized by some special properties, which were discussed since a long time by many different authors [1, 2, 3, and 4]. For manufacturing linear accelerator units it is a great advantage that Cu-Nb don’t form intermetallic compounds. One of the basic questions during application is the influence of the thermal expansion of copper and niobium. Thermal expansion of Cu-Nb was widely discussed by Nadeau and Ferrari [5]. Our research program consists of investigations on Cu50%-Nb50% composites and on Cu-Nb tubes, which on one hand have different textures and on the other hand the grain boundaries are much different in the composite with a curling microstructure and in co-extruded tubes. The present paper will concentrate on thermal stresses and the texture behavior in the temperature range 4K -1273K.


1987 ◽  
Vol 109 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Hiroshi Hatta ◽  
Minoru Taya

When a coated short fiber composite is subject to temperature change, thermal stresses in and around the coated fibers are induced due to the mismatch of thermal expansion coefficients of the constituents. The problem of the above thermal stresses in a coated short fiber composite is solved by using the Eshelby’s equivalent inclusion method under the assumption of thin coating. A parametric study is then conducted to examine the effect of thermo-mechanical properties of the coating on the stress field in an and around a coated short fiber. It is found in this study that critical parameters influencing the thermal stress field are the thermal expansion coefficients of the fiber and coating.


2010 ◽  
Vol 450 ◽  
pp. 161-164 ◽  
Author(s):  
Shiuh Chuan Her ◽  
Chin Hsien Lin ◽  
Shun Wen Yeh

Thermal stress induced by the mismatch of the thermal expansion coefficients between dissimilar materials becomes an important issue in many bi-layered systems, such as composites and micro-electronic devices. It is useful to provide a simple and efficient analytical model, so that the stress level in the layers can be accurately estimated. Basing on the Bernoulli beam theory, a simple but accurate analytical formulation is proposed to evaluate the thermal stresses in a bi-material beam. The analytical results are compared with finite element results. Good agreement demonstrates that the proposed approach is able to provide an efficient way for the calculation of the thermal stresses. It is shown that thermal stresses are linear proportion to the ratio of thermal expansion coefficients between the two materials. Parametric studies reveal that thermal stresses in each layer are decreasing with the increase of thickness, and are increasing with the increase of Young’s modulus ratio between the two materials.


2020 ◽  
Author(s):  
Daniel Draebing

Abstract. Alpine environments are characterized by fractured rock. Fractures propagate by weathering processes in a subcritical way, and prepare and trigger rock slope failures. In this study, I investigated (1) the influence of thermal changes on rock kinematics on intact rock samples from the Hungerli Valley, Swiss Alps. To (2) quantify thermal and ice induced rock and fracture kinematics and (3) identify differences of their spatial occurrence, I instrumented crackmeters at intact and fractured rock at four rockwalls reaching from 2585 to 2935 m. My laboratory data shows that thermal expansion follows three phases of rock kinematics: (1) cooling phase, (2) transition phase and (3) warming phase, which result in a hysteresis effect. The cooling phase is characterized by rock contraction, while all samples experienced rock expansion in the warming phase. During the transition phase, rock temperatures differ between rock surface and rock depth, which results in a differentiated response. The dummy crackmeters in the field reflect temperature phases observed in the laboratory and data suggest a block size dependency of the transition phase. In fractured rock, fractures open during cooling and reversely close during warming on daily and annual scale. The dipping of the shear plane controls if fracture aperture decreases with time or increases due to thermal induced block crawling. On seasonal scale, slow ice segregation induced fracture opening can occur within lithology-dependent frost cracking windows. Snow cover controls the magnitude and the number of daily temperature changes, reduces the magnitude of annual cooling but increases the length of the cooling period and, therefore, the potential occurrence of ice segregation. The effects of snow cover increases with altitude due to longer snow duration. Climate change induced warming will shift annual thermal stresses at lower altitudes, however, a shortening of the snow period can increase ground cooling and thermal stress at higher altitudes but also can reduce the length of the ice segregation period. In conclusion, climate change will affect and change rock and fracture kinematics and, therefore, rockfall patterns in Alpine environments.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


Author(s):  
Jelle Wieme ◽  
Veronique Van Speybroeck

Thermal stress is present in metal–organic frameworks undergoing temperature changes during adsorption and desorption. We computed the thermal pressure coefficient as a proxy for this phenomenon and discuss the impact of thermal expansion mismatch.


Author(s):  
Jaan Taagepera ◽  
Marty Clift ◽  
D. Mike DeHart ◽  
Keneth Marden

Three vessel modifications requiring heat treatment were analyzed prior to and during a planned turnaround at a refinery. One was a thick nozzle that required weld build up. This nozzle had been in hydrogen service and required bake-out to reduce the potential for cracking during the weld build up. Finite element analysis was used to study the thermal stresses involved in the bake-out. Another heat treatment studied was a PWHT of a nozzle replacement. The heat treatment band and temperature were varied with location in order to minimize cost and reduction in remaining strength of the vessel. Again, FEA was used to provide insight into the thermal stress profiles during heat treatment. The fmal heat treatment study was for inserting a new nozzle in a 1-1/4Cr-1/2Mo reactor. While this material would ordinarily require PWHT, the alteration was proposed to be installed without PWHT. Though accepted by the Jurisdiction, this nozzle installation was ultimately cancelled.


1975 ◽  
Vol 97 (3) ◽  
pp. 1060-1066
Author(s):  
P. F. Thomason

Closed form expressions for the steady-state thermal stresses in a π/2 wedge, subject to constant-temperature heat sources on the rake and flank contact segments, are obtained from a conformal mapping solution to the steady-state heat conduction problem. It is shown, following a theorem of Muskhelishvili, that the only nonzero thermal stress in the plane-strain wedge is that acting normal to the wedge plane. The thermal stress solutions are superimposed on a previously published isothermal cutting-load solution, to give the complete thermoelastic stress distribution at the wedge surfaces. The thermoelastic stresses are then used to determine the distribution of the equivalent stress, and this gives an indication of the regions on a cutting tool which are likely to be in the plastic state. The results are discussed in relation to the problems of flank wear and rakeface crater wear in metal cutting tools.


Sign in / Sign up

Export Citation Format

Share Document