biomass modeling
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Vol 43 ◽  
pp. e52126
Author(s):  
Thiago Wendling Gonçalves de Oliveira ◽  
Rafael Rubilar ◽  
Carlos Roberto Sanquetta ◽  
Ana Paula Dalla Corte ◽  
Alexandre Behling

Accurate forest biomass estimates require the selection of appropriate models of individual trees. Thus, two properties are required in tree biomass modeling: (1) additivity of biomass components and (2) estimator efficiency. This study aimed to develop a system of equations to estimate young eucalyptus aboveground biomass and guarantee additivity and estimator efficiency. Aboveground eucalyptus biomass models were calibrated using four methods:  generalized least squares (GLS), weighted least squares (WLS), seemingly unrelated regression (SUR), and weighted seemingly unrelated regression (WSUR). The approaches were compared with regard to performance, additivity, and estimator efficiency. The methods did not differ with regard to the mean biomass estimation; therefore, their performance was similar. The GLS and WLS approaches did not satisfy the additivity principle, as the sum of the biomass components was not equal to total biomass. However, this was not observed with the SUR and WSUR approaches. With regard to estimator efficiency, the WSUR approach resulted in narrow confidence intervals and an efficiency gain of over 20%. The WSUR approach should be used in forest biomass modeling as it resulted in effective estimators while ensuring equation additivity, thus providing an easy and accurate alternative to estimate the initial biomass of eucalyptus stands in ecophysiological models.


2021 ◽  
Vol 51 (2) ◽  
pp. 199-214
Author(s):  
XueJun WANG ◽  
YuXing ZHANG

2020 ◽  
Vol 11 ◽  
Author(s):  
Fei Li ◽  
Cristiano Piasecki ◽  
Reginald J. Millwood ◽  
Benjamin Wolfe ◽  
Mitra Mazarei ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 202 ◽  
Author(s):  
Lihu Dong ◽  
Yue Zhang ◽  
Zhuo Zhang ◽  
Longfei Xie ◽  
Fengri Li

Accurate quantification of tree biomass is critical and essential for calculating carbon storage, as well as for studying climate change, forest health, forest productivity, nutrient cycling, etc. Tree biomass is typically estimated using statistical models. Although various biomass models have been developed thus far, most of them lack a detailed investigation of the additivity properties of biomass components and inherent correlations among the components and aboveground biomass. This study compared the nonadditive and additive biomass models for larch (Larix olgensis Henry) trees in Northeast China. For the nonadditive models, the base model (BM) and mixed effects model (MEM) separately fit the aboveground and component biomass, and they ignore the inherent correlation between the aboveground and component biomass of the same tree sample. For the additive models, two aggregated model systems with one (AMS1) and no constraints (AMS2) and two disaggregated model systems without (DMS1) and with an aboveground biomass model (DMS2) were fitted simultaneously by weighted nonlinear seemingly unrelated regression (NSUR) and applied to ensure additivity properties. Following this, the six biomass modeling approaches were compared to improve the prediction accuracy of these models. The results showed that the MEM with random effects had better model fitting and performance than the BM, AMS1, AMS2, DMS1, and DMS2; however, when no subsample was available to calculate random effects, AMS1, AMS2, DMS1, and DMS2 could be recommended. There was no single biomass modeling approach to predict biomass that was best for all aboveground and component biomass except for MEM. The overall ranking of models based on the fit and validation statistics obeyed the following order: MEM > DMS1 > AMS2 > AMS1> DMS2 > BM. This article emphasized more on the methodologies and it was expected that the methods could be applied by other researchers to develop similar systems of the biomass models for other species, and to verify the differences between the aggregated and disaggregated model systems. Overall, all biomass models in this study have the benefit of being able to predict aboveground and component biomass for larch trees and to be used to predict biomass of larch plantations in Northeast China.


2019 ◽  
Vol 232 ◽  
pp. 111323 ◽  
Author(s):  
Catherine Torres de Almeida ◽  
Lênio Soares Galvão ◽  
Luiz Eduardo de Oliveira Cruz e Aragão ◽  
Jean Pierre Henry Balbaud Ometto ◽  
Aline Daniele Jacon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document