Drosophila embryonic pattern repair: how embryos respond to cyclin E-induced ectopic division

Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2299-2307 ◽  
Author(s):  
Q.J. Li ◽  
T.M. Pazdera ◽  
J.S. Minden

The Drosophila melanogaster embryo ordinarily undergoes thirteen cycles of rapid syncytial division followed by three rounds of cellular division for most cells. Strict regulation of the number of divisions is believed to be essential for normal patterning and development. To determine how the embryo responds to hyperplastic growth, we have examined epidermal development in embryos that experience additional rounds of mitosis as the result of ectopic Cyclin E expression. We observed that the cell density in the epidermis nearly doubled within 1 hour of Cyclin E induction. The spacing and width of the ENGRAILED and wingless stripes was unchanged, but the cell density within the stripes was increased. By 4 hours after Cyclin E induction, the cell density had returned to almost normal values. The embryos developed, albeit more slowly, to produce viable larvae and adults. The excess cells were removed by apoptosis in a reaper-dependent fashion as evidenced by increased reaper expression. Embryos lacking cell death in the abdomen exhibited changes in ENGRAILED expression. In addition, germband retraction and dorsal closure were slower than normal. Ectopic Cyclin E expression in cell-death-deficient embryos exacerbated the germband retraction and ENGRAILED-expression defects.

2010 ◽  
Vol 73 (3) ◽  
pp. 119-127 ◽  
Author(s):  
Akira Sakurai ◽  
Yoshiro Nakano ◽  
Masayuki Koganezawa ◽  
Daisuke Yamamoto

1999 ◽  
Vol 70 (3) ◽  
pp. 363-367 ◽  
Author(s):  
Jostein Dahle ◽  
Harald B. Steen ◽  
Johan Moan

Development ◽  
1977 ◽  
Vol 40 (1) ◽  
pp. 1-21
Author(s):  
Dennis Summerbell

Removal of the apical ectodermal ridge causes a reduction in the rate of outgrowth of the wing-bud and the loss of distal parts. More specifically it causes a short-term increase in cell density and cell death and a decrease in the rate of cell proliferation. The evidence supports the hypothesis of density-dependent control of cell division and suggests that there may also be a mechanism regulating skeletal length at the time of differentiation. An informal model is presented to explain the observations.


Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 99-114
Author(s):  
Alfonso Martinez-Arias

The mutant fused (1–59·5) belongs to a class of lethal mutations in Drosophila melanogaster that produce pattern duplications in every segment of the mature embryo. A study of the embryonic development of fused'− embryos derived horn fused− mothers shows that extensive cell death occurs early in development. This cell death accounts for the smaller size of the segments in fused− embryos. The pattern duplication observed is, probably, a secondary consequence of the pattern deletion.


Sign in / Sign up

Export Citation Format

Share Document