macromolecular tracers
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

2019 ◽  
Author(s):  
Philippe Jean ◽  
Tommi Anttonen ◽  
Susann Michanski ◽  
Antonio MG de Diego ◽  
Anna M. Steyer ◽  
...  

AbstractInner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other. We report that, upon developmental maturation, 30% of the IHCs are electrochemically coupled in ‘mini-syncytia’. This coupling permits transfer of fluorescently-labeled metabolites and macromolecular tracers. The membrane capacitance, Ca2+-current, and resting current increase with the number of dye-coupled IHCs. Dual voltage-clamp experiments substantiate low resistance electrical coupling. Pharmacology and tracer permeability rule out coupling by gap junctions and purinoceptors. 3D-electron-microscopy indicates instead that IHCs are coupled by membrane fusion sites. Consequently, depolarization of one IHC triggers presynaptic Ca2+-influx at active zones in the entire mini-syncytium. Based on our findings and modeling, we propose that IHC-mini-syncytia enhance sensitivity and reliability of cochlear sound encoding.


2006 ◽  
Vol 291 (6) ◽  
pp. H2758-H2771 ◽  
Author(s):  
Yixin Shou ◽  
Kung-ming Jan ◽  
David S. Rumschitzki

In this study, filtration flows through the walls of the rat aorta, pulmonary artery (PA), and inferior vena cava (IVC), vessels with very different susceptibilities to atherosclerosis, were measured as a function of transmural pressure (ΔP), with intact and denuded endothelium on the same vessel. Aortic hydraulic conductivity ( Lp) is high at 60 mmHg, drops ∼40% by 100 mmHg, and is pressure independent to 140 mmHg. The trends are similar in the PA and IVC, dropping 42% from 10 to 40 mmHg and flat to 100 mmHg (PA) and dropping 33% from 10 to 20 mmHg and essentially flat to 60 mmHg (IVC). Removal of the endothelium renders Lp(ΔP) flat: it increases Lp of the aorta by ∼75%, doubles Lp of the PA, and quadruples Lp of the IVC. Specific resistance (1/ Lp) of the aortic endothelium is ∼47% of total resistance; i.e., the endothelium accounts for ∼47% of the ΔP drop at 100 mmHg. The PA value is 55% at >40 mmHg, and the IVC value is 23% at 10 mmHg. Lp of the intact aorta, PA, and IVC are order 10−8, 10−7, and 5 × 10−7 cm·s−1·mmHg−1, and wall thicknesses are 145.8 μm (SD 9.3), 78.9 μm (SD 3.3), and 66.1 μm (SD 4.1), respectively. These data are consistent with the different wall structures of the three vessels. The rat aortic Lp data are quantitatively consistent with rabbit Lp(ΔP) (Tedgui A and Lever MJ. Am J Physiol Heart Circ Physiol 247: H784–H791, 1984; Baldwin AL and Wilson LM. Am J Physiol Heart Circ Physiol 264: H26–H32, 1993), suggesting that intimal compression under pressure loading may also play a role in Lp(ΔP) in these other vessels. Despite very different driving ΔP, nominal transmural water fluxes of these three vessels are very similar and, therefore, cannot alone account for their differences in disease susceptibility. The different fates of macromolecular tracers convected by these water fluxes into the walls of these vessels may account for this difference.


2004 ◽  
Vol 48 (7) ◽  
pp. 2370-2378 ◽  
Author(s):  
Heinrich C. Hoppe ◽  
Donelly A. van Schalkwyk ◽  
Ursula I. M. Wiehart ◽  
Sandra A. Meredith ◽  
Joanne Egan ◽  
...  

ABSTRACT Endocytosis is a fundamental process of eukaryotic cells and fulfills numerous functions, most notably, that of macromolecular nutrient uptake. Malaria parasites invade red blood cells and during their intracellular development endocytose large amounts of host cytoplasm for digestion in a specialized lysosomal compartment, the food vacuole. In the present study we have examined the effects of artemisinin and the quinoline drugs chloroquine and mefloquine on endocytosis in Plasmodium falciparum. By using novel assays we found that mefloquine and artemisinin inhibit endocytosis of macromolecular tracers by up to 85%, while the latter drug also leads to an accumulation of undigested hemoglobin in the parasite. During 5-h incubations, chloroquine inhibited hemoglobin digestion but had no other significant effect on the endocytic pathway of the parasite, as assessed by electron microscopy, the immunofluorescence localization of hemoglobin, and the distribution of fluorescent and biotinylated dextran tracers. By contrast, when chloroquine was added to late ring stage parasites, followed by a 12-h incubation, macromolecule endocytosis was inhibited by more than 40%. Moreover, there is an accumulation of transport vesicles in the parasite cytosol, possibly due to a disruption in vacuole-vesicle fusion. This fusion block is not observed with mefloquine, artemisinin, quinine, or primaquine but is mimicked by the vacuole alkalinizing agents ammonium chloride and monensin. These results are discussed in the light of present theories regarding the mechanisms of action of the antimalarials and highlight the potential use of drugs in manipulating and studying the endocytic pathway of malaria parasites.


2001 ◽  
Vol 281 (5) ◽  
pp. F860-F868 ◽  
Author(s):  
Matthew J. Lazzara ◽  
William M. Deen

It was found previously that the sieving coefficients of Ficoll and Ficoll sulfate across isolated glomerular basement membrane (GBM) were greatly elevated when BSA was present at physiological levels, and it was suggested that most of this increase might have been the result of steric interactions between BSA and the tracers (5). To test this hypothesis, we extended the theory for the sieving of macromolecular tracers to account for the presence of a second, abundant solute. Increasing the concentration of an abundant solute is predicted to increase the equilibrium partition coefficient of a tracer in a porous or fibrous membrane, thereby increasing the sieving coefficient. The magnitude of this partitioning effect depends on solute size and membrane structure. The osmotic reduction in filtrate velocity caused by an abundant, mostly retained solute will also tend to elevate the tracer sieving coefficient. The osmotic effect alone explained only about one-third of the observed increase in the sieving coefficients of Ficoll and Ficoll sulfate, whereas the effect of BSA on tracer partitioning was sufficient to account for the remainder. At physiological concentrations, predictions for tracer sieving in the presence of BSA were found to be insensitive to the assumed shape of the protein (sphere or prolate spheroid). For protein mixtures, the theoretical effect of 6 g/dl BSA on the partitioning of spherical tracers was indistinguishable from that of 3 g/dl BSA and 3 g/dl IgG. This suggests that for partitioning and sieving studies in vitro, a good experimental model for plasma is a BSA solution with a mass concentration matching that of total plasma protein. The effect of plasma proteins on tracer partitioning is expected to influence sieving not only in isolated GBM but also in intact glomerular capillaries in vivo.


1993 ◽  
Vol 74 (2) ◽  
pp. 817-824 ◽  
Author(s):  
I. Erjefalt ◽  
A. Luts ◽  
C. G. Persson

This study examines the fate of extravasated plasma in inflammatory stimulus-challenged large tracheobronchial airways of ketamine-xylazine-anesthetized guinea pigs. Entry of plasma tracers into the airway lumen was determined by a validated noninjurious airway lavage technique. Removal by airway lymphatics was assessed by tracheobronchial lymph node levels of plasma tracers. Mucosal challenges with histamine (5 nmol), bradykinin (5 nmol), capsaicin (0.4 nmol), or allergen (ovalbumin, 3 pmol) increased the appearance of a plasma tracer (131I-labeled albumin previously injected intravenously) in the airway lumen within 10 min (10–20 times control; P < 0.001), whereas the contractile agent carbachol (8 nmol) was without exudative effect. The mediators were without effect, and capsaicin and allergen only slightly increased the lymph node level of plasma exudation tracer (1.5 times control; P < 0.05). Hence, removal via the lymphatic route of plasma macromolecules may be negligible in the acute and postacute phases of an airway exudation response. Experiments were also carried out with luminally applied macromolecular tracers. These were absorbed from the mucosal surface into the circulation, but a small portion was also transported to the lymph nodes, demonstrating the interconnections between the mucosa and the sampled nodes. Only capsaicin produced an increased node level of absorption tracer. Immunohistochemistry showed that the tracheobronchial tissue and lymph nodes are endowed with nerve fibers containing substance P, the release of which may have mediated lymph transport, vascular, and exudative effects of capsaicin in the present studies.(ABSTRACT TRUNCATED AT 250 WORDS)


1983 ◽  
Vol 4 (6) ◽  
pp. 400-410 ◽  
Author(s):  
Arndt J. Duvall ◽  
Anne Klinkner

1981 ◽  
Vol 241 (5) ◽  
pp. G349-G358 ◽  
Author(s):  
J. G. Forte ◽  
J. A. Black ◽  
T. M. Forte ◽  
T. E. Machen ◽  
J. M. Wolosin

When stimulated to secrete HCl the gastric oxyntic cell undergoes profound morphological change. The identifiable apical cell surface is greatly expanded in the stimulated oxyntic cell as compared with nonsecreting ones. To account for this change, one hypothesis proposes that the expanded surface is derived from the fusion of cytoplasmic tubulovesicular membranes with the existing limited apical membrane surface. An alternative hypothesis suggests that the tubulovesicular compartment is actually confluent with the apical surface at all times and that the morphological appearance follows the expansion of this supercollapsed compartment as HCl secretion commences. A variety of morphological evidence is reviewed here including transmission electron microscopy during various stages of secretion and inhibition, analysis of freeze-fracture replicas, penetration of macromolecular tracers, and membrane surface-staining characteristics. It is concluded that the weight of evidence favors a membrane fusion process. Moreover, recent comparative studies of membrane fractions from resting and secreting stomachs show different morphological and functional properties that are also consistent with a fusion hypothesis as a fundamental event in the membrane transformation of the oxyntic cell.


1981 ◽  
Vol 240 (3) ◽  
pp. C96-C102 ◽  
Author(s):  
M. Cereijido ◽  
I. Meza ◽  
A. Martinez-Palomo

When MDCK cells are cultured in monolayers, they synthesize, assemble, and seal occluding junctions that limit the paracellular route. These processes may be impaired by inhibitors of the protein synthesis but not by inhibitors of the synthesis of RNA. Once established, the occluding junctions confer to the monolayer an overall electrical resistance of 80–600 omega . cm2. At the microscopical level, the resistance of individual junctions have large variations along the perimeter of a given cell. This agrees with the images of freeze-fracture electron microscopy where the network of the junction varies abruptly from 1 to 10 strands. The junctions are impermeable to macromolecular tracers, have a 9 to 1 Na+/Cl- discrimination, and a cation selectivity following the order: K+ greater than Na+ greater than Rb+ greater than Cs+ greater than Li+. Sealing requires extracellular Ca2+, but the junctions open when the concentration of Ca2+ in the cytoplasm increases. The structural components of the cytoskeleton (microtubules and microfilaments) seem to be involved in the junctional events as revealed by staining with immunofluorescent specific antibodies. If the cells are treated with cytochalasin B, actin microfilaments disorganize, the junctions open, and the electrical resistance across the monolayers falls. The resealing of the tight junction is inhibited by this drug.


Sign in / Sign up

Export Citation Format

Share Document