piezoelectric actuation
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 33)

H-INDEX

27
(FIVE YEARS 5)

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 335
Author(s):  
Víctor Ruiz-Díez ◽  
José Luis García-Caraballo ◽  
Jorge Hernando-García ◽  
José Luis Sánchez-Rojas

The miniaturization of robots with locomotion abilities is a challenge of significant technological impact in many applications where large-scale robots have physical or cost restrictions. Access to hostile environments, improving microfabrication processes, or advanced instrumentation are examples of their potential use. Here, we propose a miniature 20 mm long sub-gram robot with piezoelectric actuation whose direction of motion can be controlled. A differential drive approach was implemented in an H-shaped 3D-printed motor platform featuring two plate resonators linked at their center, with built-in legs. The locomotion was driven by the generation of standing waves on each plate by means of piezoelectric patches excited with burst signals. The control of the motion trajectory of the robot, either translation or rotation, was attained by adjusting the parameters of the actuation signals such as the applied voltage, the number of applied cycles, or the driving frequency. The robot demonstrated locomotion in bidirectional straight paths as long as 65 mm at 2 mm/s speed with a voltage amplitude of only 10 V, and forward and backward precise steps as low as 1 µm. The spinning of the robot could be controlled with turns as low as 0.013 deg. and angular speeds as high as 3 deg./s under the same conditions. The proposed device was able to describe complex trajectories of more than 160 mm, while carrying 70 times its own weight.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7654
Author(s):  
Javier Toledo ◽  
Víctor Ruiz-Díez ◽  
Jaime Velasco ◽  
Jorge Hernando-García ◽  
José Luis Sánchez-Rojas

The in-line monitoring of liquid properties, such as density and viscosity, is a key process in many industrial areas such as agro-food, automotive or biotechnology, requiring real-time automation, low-cost and miniaturization, while maintaining a level of accuracy and resolution comparable to benchtop instruments. In this paper, 3D-printed cuboid-shaped liquid cells featuring a rectangular vibrating plate in one of the sides, actuated by PZT piezoelectric layers, were designed, fabricated and tested. The device was resonantly excited in the 3rd-order roof tile-shaped vibration mode of the plate and validated as a density-viscosity sensor. Furthermore, conditioning circuits were designed to adapt the impedance of the resonator and to cancel parasitic effects. This allowed us to implement a phase-locked loop-based oscillator circuit whose oscillation frequency and voltage amplitude could be calibrated against density and viscosity of the liquid flowing through the cell. To demonstrate the performance, the sensor was calibrated with a set of artificial model solutions of grape must, representing stages of a wine fermentation process. Our results demonstrate the high potential of the low-cost sensor to detect the decrease in sugar and the increase in ethanol concentrations during a grape must fermentation, with a resolution of 10 µg/mL and 3 µPa·s as upper limits for the density and viscosity, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6077
Author(s):  
Takashi Ozaki ◽  
Norikazu Ohta ◽  
Motohiro Fujiyoshi

In recent years, laser scanners have attracted significant attention for applications such as laser radars. However, the establishment of a two-degree-of-freedom scanner that can quasi-statically drive a large mirror with a large deflection angle has proven to be challenging. In this paper, we propose a laser scanner design and fabrication method by combining two unimorph piezoelectric actuators composed of piezoelectric single-crystal Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 and a miniature translation-rotation conversion mechanism with flexible polyimide hinges. The size of the entire scanner was 32 mm × 12 mm × 10 mm. We successfully demonstrated that the scanner could achieve a large quasi-static mechanical deflection angle amplitude of 20.5° in two axes with a 6-mm-square mirror.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 969
Author(s):  
Xiang Lu ◽  
Xiang Xi ◽  
Kun Lu ◽  
Chengxiang Wang ◽  
Xiang Chen ◽  
...  

A miniature deformable squama mechanics based on piezoelectric actuation inspired by the deformable squama is proposed in this paper. The overall size of the mechanics is 16 mm × 6 mm × 6 mm, the weight is only 140 mg, the deflection angle range of the mechanical deformation is −15°~45°, and the mechanical deformation is controllable. The small-batch array processing of the miniature deformable squama mechanics, based on the stereoscopic process, laid the technological foundation for applying the deformed squama array arrangement. We also designed and manufactured a small actuation control boost circuit and a mobile phone piezoelectric control assistant application that makes it convenient to perform short-range non-contact control of the deformation of the squama. The proposed system arranges the deformed squamae into groups to form the skin and controlls the size and direction of the signals input to each group of the squama array, thereby making the skin able to produce different shapes to create deformable skin.


2021 ◽  
Vol 11 (14) ◽  
pp. 6276
Author(s):  
Congkai Shen ◽  
Siyuan Yu ◽  
Junjie Luo ◽  
Kenn R. Oldham

This paper explores a concept for dynamic amplification of piezoelectric actuator motion using repeated impacts between the active transducer and a compliant amplification mechanism. The design shows good performance in amplifying vibration of a lead–zirconate–titanate (PZT) bimorph while down-converting the output frequency of motion from more than 150 Hz to less than 20 Hz. A simple dynamic model is used to identify the conceptual opportunities for impact-based amplification of PZT displacement. Experimental results are gathered from a prototype system with dimensions 55 mm × 22 mm × 1 mm. PZT displacement is amplified by a factor of more than 100 with near-periodic output oscillations at select input frequencies. Implications for leveraging the low-frequency output oscillations in small mobile robots are briefly discussed.


2021 ◽  
Author(s):  
Wei Li ◽  
Hong-Yan Chen ◽  
Hong Yang

Abstract In this paper, the nonlinear dynamic characteristics of statically piezoelectric actuated vibrating beam micro-gyroscopes are studied. The comprehensive nonlinear model including curvature, inertia and electrostatic force nonlinearities is considered. In the research of electrostatic micro-gyroscopes, it’s a novel way to tune the primary resonance by piezoelectric actuation and multiple nonlinearities. The multiple scales method and numerical continuation technique are used to characterize the frequency-amplitude and force-amplitude responses of the micro-gyroscopes. The effect of varying the size-dependent, fringing field, statically piezoelectric voltage and nonlinear curvature and inertia on the dynamic response of the micro-gyroscope is investigated in detail. The frequency-response results show that small vibrations produce a symmetrical frequency response curve in sense direction while the system actually has a significant softening characteristic in drive direction. The nonlinear multi-value problem effectively reduces in sense direction under the size-dependent effect, which plays an important role in the design of detection instruments for micro-gyroscopes. Choosing a positive piezoelectric actuation voltage will obtain a higher sensitivity. Increasing the curvature nonlinearity and reducing the inertial nonlinearity of the gyroscopic system will help the micro-gyroscope obtain better sensitivity, and may eliminate multi-valued responses as much as possible.


Author(s):  
Goutam Roy ◽  
Brajesh Kumar Panigrahi ◽  
Goutam Pohit

In the present work, damage produced by a crack in a statically loaded beam is first evaluated. Subsequently, an attempt is made to repair the effect of the crack by attaching a piezoelectric patch to the beam as an actuator. Static analysis of PZT patched cracked beam along with rotational spring is performed using Ritz method. Subsequently, a finite element analysis is performed by using ABAQUS 6.12 to collate the analytical results. It is shown in the study that when PZT patch is subjected to external electric field, it yields a local reactive moment, which counters the crack effects. An equation is procured in order to compute the required actuation voltage for repairing of cracks. A parametric study is performed for various boundary conditions and loading patterns. It is distinctly noticed that the technique nullifies the discontinuity in slope curve which develops due to a crack.


Author(s):  
Zi-Hui Zhu ◽  
Li Chen ◽  
Yuhan Niu ◽  
Xiaonan Pu ◽  
Peng Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document