dynamic bandwidth assignment
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 2)

Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 114
Author(s):  
Khalid.H. Mohammadani ◽  
Rizwan Aslam Butt ◽  
Kamran Ali Memon ◽  
Fayaz Hassan ◽  
Abdul Majeed ◽  
...  

The combination of a high-speed wireless network with passive optical network technologies has led to the evolution of a modern integrated fiber wireless (FiWi) access network. Compared to broadband wireless networks, the FiWi network offers higher bandwidth with improved reliability and reduced maintenance costs due to the passive nature of passive optical network (PON). Since the quality of service (QoS) is a baseline to deploy high-speed FiWi broadband access networks, therefore, it is essential to analyze and reduce the typical problems (e.g., bandwidth and delay) in the high-speed next-generation networks (NGANs). This study investigates the performance of a fiber wireless architecture where a 10-Gigabit-capable passive optical network (XGPON) and fifth generation of wireless local area network (WLAN) (i.e., IEEE 802.11ac) are integrated. Both technologies take benefits from each other and have pros and cons concerning the QoS demands of subscribers. The proposed work offers a very flexible QoS scheme for the different types of services of 5G WLAN and XGPON with the help of the highest cost first (HCF) algorithm, which leads to reduced upstream delays for delay-sensitive applications. The simulation results show that the HCF algorithm boosts the performance of the dynamic bandwidth assignment (DBA) scheme and results in up to 96.1%, 90.8%, and 55.5% reduced upstream (US) delays for video: VI(T2), background: BK(T3), and best effort: BE(T4) traffic in enhanced-distributed-channel-access (EDCA) mode. Compared to earlier work, the HCF and immediate allocation with the colorless grant (IACG) DBA combination results in the reduction of up to 54.8% and 53.4% mean US delays. This happens because of 50% to 65% better bandwidth assignment by the IACG DBA process due to efficient mapping by the HCF algorithm.


2020 ◽  
Vol 41 (3) ◽  
pp. 279-293 ◽  
Author(s):  
Rizwan Aslam Butt ◽  
M. Waqar Ashraf ◽  
M Faheem ◽  
Sevia M Idrus

AbstractIn time division, multiple access (TDMA)-based passive optical network (PONs), a dynamic bandwidth assignment (DBA) is necessary for efficient utilization of the available bandwidth of the upstream link. An efficient DBA scheme can improve the upstream performance of a traffic class of an ONU in two ways. First, it can increase the bandwidth assignment to it by efficiently utilizing the available bandwidth. Secondly, it can reduce the channel and frame idle time by increasing the polling frequency and by assigning extra surplus bandwidth not used by the other ONUs. Many DBA schemes have been reported for both ITU PONs (GPON and XGPON) and IEEE PONs (EPON and 10 G EPON). In this study, we explain the impact of DBA scheme on the upstream performance of PON and then do a thorough survey of both PON standards, categorize the DBA schemes and review them critically. Based on the literature review we also give our opinion on the most suitable DBA scheme for both type PONs on the basis of upstream delays, frame loss and bandwidth utilization efficiency.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Rizwan Aslam Butt ◽  
M. Faheem ◽  
M. Waqar Ashraf ◽  
Attaullah Khawaja ◽  
Basit Raza

AbstractNetwork security is an important component of today’s networks to combat the security attacks. The passive optical network (PON) works at the medium access layer (MAC). A distributed denial of service (DDOS) attack may be launched from the network and transport layers of an Optical Network unit (ONU). Although there are various security techniques to mitigate its impact, however, these techniques cannot mitigate the impact on the MAC Layer of the PON and can cause an ONU to continuously drain too much bandwidth. This will result in reduced bandwidth availability to other ONUs and, thus, causing an increase in US delays and delay variance. In this work we argue that the impact of a DDOS attack can be mitigated by improving the Dynamic bandwidth assignment (DBA) scheme which is used in PON to manage the US bandwidth at the optical line terminal (OLT). The present DBA schemes do not have the capability to combat a security attack. Thus, this study, uses a machine learning approach to learn the ONU traffic demand patterns and presents a security aware DBA (SA-DBA) scheme that detects a rogue (attacker) ONU from its traffic demand pattern and limits its illegitimate bandwidth demand and only allows it the bandwidth assignment to it as per the agreed service level agreement (SLA). The simulation results show that the SA-DBA scheme results in up to 53%, 55% and 90% reduced US delays and up to 84%, 76% and 95% reduced US delay variance of T2, T3 and T4 traffic classes compared to existing insecure DBA schemes.


2019 ◽  
Vol 40 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Rizwan A. Butt ◽  
Sevia M. Idrus ◽  
Shahid-Ur Rehman ◽  
Pir Meher Ali Shah ◽  
Nadiatulhuda Zulkifli

Abstract Dynamic bandwidth assignment (DBA) schemes for long reach PONs face a suffer from higher upstream channel idle time due to long round trip time (RTT). In ITU PONs, the DBA schemes; Immediate allocation with colorless grant (IACG), Efficient bandwidth utilization (EBU) and GPON redundancy eraser algorithm (GREAL) minimize idle time by sending bandwidth grants to the optical network units (ONUs) every downstream frame (DF). EBU further improves IACG by utilizing unused bandwidth (UBW) of other traffic classes. Sending the grant results every DF requires optical line terminal (OLT) to remember all previous grants sent to ONU during RTT and subtract them from the received queue reports. Since, both IACG and EBU assign the excess bandwidth equally to ONUs. Therefore, the OLT is actually not aware of the complete grant to each traffic class and thus do not subtract these completely from receiving reports. This leads to wastage of bandwidth and higher US delays due to over granting. GREAL resolves this problem by not utilizing the excess bandwidth which also leads to increased US delays. The proposed scheme in this study eliminates this shortcoming by allocating excess bandwidth to each traffic class completely at the OLT. Moreover, the UBW assignment mechanism of EBU is also improved. Simulation results show a 50–85 % reduction in delays of type-2 (T2) and type-3 (T3) traffic classes versus GREAL and IACG and up to 40 % reduction in delays for type-4 (T4) versus EBU.


2018 ◽  
Vol 36 (3) ◽  
pp. 289-300
Author(s):  
Rizwan Aslam Butt ◽  
M. Faheem ◽  
M. Waqar Ashraf ◽  
Sevia M. Idrus

Sign in / Sign up

Export Citation Format

Share Document