precision synthesis
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zijie Li ◽  
Qinqin Shi ◽  
Xiaoying Ma ◽  
Yawen Li ◽  
Kaikai Wen ◽  
...  

AbstractStructural defects in conjugated copolymers are severely detrimental to the optoelectronic properties and the performance of the resulting electronic devices fabricated from them. Therefore, the much-desired precision synthesis of conjugated copolymers with highly regular repeat units is important, but presents a significant challenge to synthetic materials chemists. To this end, aryl sulfides are naturally abundant substances and offer unrealized potential in cross-coupling reactions. Here we report an efficient room temperature polycondensation protocol which implements aryl disulfide C-S activation to produce defect-minimized semiconducting conjugated copolymers with broad scope and applicability. Thus, a broad series of arylstannanes and thioethers are employed via the present protocol to afford copolymers with number-average molecular weights (Mns) of 10.0–45.0 kDa. MALDI and NMR analysis of selected copolymers reveals minimal structural defects. Moreover, the polymer trap density here is smaller and the field effect mobility higher than that in the analogous polymer synthesized through thermal-activation Stille coupling.


2022 ◽  
Author(s):  
Hiroshi Masai ◽  
Yuki Oka ◽  
Jun Terao

Interest in macromolecules has increased because of their functional properties, which can be tuned using precise organic synthetic methods. For example, desired functions have been imparted by controlling the nanoscale...


2021 ◽  
Author(s):  
Chao Zhong ◽  
Bernd Nidetzky

AbstractEnzyme-catalyzed iterative β-1,4-glycosylation of β-glycosides is promising for bottom-up polymerization of reducing-end-modified cello-oligosaccharide chains. Self-assembly of the chains from solution yields crystalline nanocellulose materials with properties that are tunable by the glycoside group used. Cellulose chains with a reducing-end thiol group are of interest to install a controllable pattern of site-selective modifications into the nanocellulose material. Selection of the polymerizing enzyme (cellodextrin phosphorylase; CdP) was pursued here to enhance the synthetic precision of β-1-thio-glucose conversion to generate pure “1-thio-cellulose” (≥95%) unencumbered by plain (unlabeled) cellulose resulting from enzymatic side reactions. The CdP from Clostridium stercorarium (CsCdP) was 21 times more active on β-1-thio-glucose (0.17 U/mg; 45 °C) than the CdP from Clostridium cellulosi (CcCdP), and it lacked hydrolase activity, which is substantial in CcCdP, against the α-d-glucose 1-phosphate donor substrate. The combination of these enzyme properties indicated that CsCdP is a practical catalyst for 1-thio-cellulose synthesis directly from β-1-thio-glucose (8 h; 25 mol% yield) that does not require a second enzyme (cellobiose phosphorylase), which was essential when using the less selective CcCdP. The 1-thio-cellulose chains had an average degree of polymerization of ∼10 and were assembled into highly crystalline cellulose II crystallinity material.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2193
Author(s):  
Sousa Javan Nikkhah ◽  
Elsi Turunen ◽  
Anneli Lepo ◽  
Tapio Ala-Nissila ◽  
Maria Sammalkorpi

Multicore polymer micelles and aggregates are assemblies that contain several cores. The dual-length-scale compartmentalized solvophobic–solvophilic molecular environment makes them useful for, e.g., advanced drug delivery, high-precision synthesis platforms, confined catalysis, and sensor device applications. However, designing and regulating polymer systems that self-assemble to such morphologies remains a challenge. Using dissipative particle dynamics (DPD) simulations, we demonstrate how simple, three-component linear polymer systems consisting of free solvophilic and solvophobic homopolymers, and di-block copolymers, can self-assemble in solution to form well-defined multicore assemblies. We examine the polymer property range over which multicore assemblies can be expected and how the assemblies can be tuned both in terms of their morphology and structure. For a fixed degree of polymerization, a certain level of hydrophobicity is required for the solvophobic component to lead to formation of multicore assemblies. Additionally, the transition from single-core to multicore requires a relatively high solvophobicity difference between the solvophilic and solvophobic polymer components. Furthermore, if the solvophilic polymer is replaced by a solvophobic species, well-defined multicore–multicompartment aggregates can be obtained. The findings provide guidelines for multicore assemblies’ formation from simple three-component systems and how to control polymer particle morphology and structure.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Chao Feng ◽  
Gaoyan Xiong ◽  
Yaping Li ◽  
Qianqian Gao ◽  
Yuan Pan ◽  
...  

Determining the effect of crystal facet on the reaction performance is essential for designing an efficient propane oxidation catalyst. Herein, α-MnO2 nanowires with exposed (110), (211), (310) and (200) facets...


Author(s):  
Xinhao Fang ◽  
Kai Gao ◽  
Jianxiang Huang ◽  
Kexin Liu ◽  
Linying Chen ◽  
...  

Peptide dendrimers have a broad application in biomedical science due to their biocompatibility, diversity, and multifunctionality, but the precision synthesis of high-molecule weight peptide dendrimers remains challenging. We here report...


2021 ◽  
Author(s):  
Yu Tokita ◽  
Masaru Katoh ◽  
Kentaro Kosaka ◽  
Yoshihiro Ohta ◽  
Tsutomu Yokozawa

Suzuki-Miyaura catalyst-transfer condensation polymerization (CTCP) of fluorene-thiophene biaryl monomers was investigated for the synthesis of well-defined poly(fluorene-alt-thiophene). Model reactions of α,ω-dibromo(fluorene-thiophene) with arylboronic acid esters showed that t-Bu3P Pd and...


Sign in / Sign up

Export Citation Format

Share Document