scholarly journals Light-Emitting Textiles: Device Architectures, Working Principles, and Applications

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 652
Author(s):  
Marco Cinquino ◽  
Carmela Tania Prontera ◽  
Marco Pugliese ◽  
Roberto Giannuzzi ◽  
Daniela Taurino ◽  
...  

E-textiles represent an emerging technology aiming toward the development of fabric with augmented functionalities, enabling the integration of displays, sensors, and other electronic components into textiles. Healthcare, protective clothing, fashion, and sports are a few examples application areas of e-textiles. Light-emitting textiles can have different applications: sensing, fashion, visual communication, light therapy, etc. Light emission can be integrated with textiles in different ways: fabricating light-emitting fibers and planar light-emitting textiles or employing side-emitting polymer optical fibers (POFs) coupled with light-emitting diodes (LEDs). Different kinds of technology have been investigated: alternating current electroluminescent devices (ACELs), inorganic and organic LEDs, and light-emitting electrochemical cells (LECs). The different device working principles and architectures are discussed in this review, highlighting the most relevant aspects and the possible approaches for their integration with textiles. Regarding POFs, the methodology to obtain side emissions and the critical aspects for their integration into textiles are discussed in this review. The main applications of light-emitting fabrics are illustrated, demonstrating that LEDs, alone or coupled with POFs, represent the most robust technology. On the other hand, OLEDs (Organic LEDs) are very promising for the future of light-emitting fabrics, but some issues still need to be addressed.

2011 ◽  
Vol 83 (12) ◽  
pp. 2115-2128 ◽  
Author(s):  
Rubén D. Costa ◽  
Enrique Ortí ◽  
Henk J. Bolink

Light-emitting electrochemical cells (LECs) are solution-processable thin-film electroluminescent devices consisting of a luminescent material in an ionic environment. The simplest type of LEC is based on only one material, ionic transition-metal complexes (iTMCs). These materials are of interest for different scientific fields such as chemistry, physics, and technology as selected chemical modifications of iTMCs resulted in crucial breakthroughs for the performance of LECs. This short review highlights the different strategies used to design these compounds with the aim to enhance the performances of LECs.


2008 ◽  
Vol 78 (24) ◽  
Author(s):  
Nathaniel D. Robinson ◽  
Junfeng Fang ◽  
Piotr Matyba ◽  
Ludvig Edman

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Junpeng Ji ◽  
Igor F. Perepichka ◽  
Junwu Bai ◽  
Dan Hu ◽  
Xiuru Xu ◽  
...  

AbstractCurrent power supply networks across the world are mostly based on three-phase electrical systems as an efficient and economical way for generation, transmission and distribution of electricity. Now, many electrically driven devices are relying on direct current or single-phase alternating current power supply that complicates utilization of three-phase power supply by requiring additional elements and costly switching mechanisms in the circuits. For example, light-emitting devices, which are now widely used for displays, solid-state lighting etc. typically operate with direct current power sources, although single-phase alternating current driven light-emitting devices have also gained significant attention in the recent years. Yet, light-emitting devices directly driven by a three-phase electric power has never been reported before. Benefiting from our precious work on coplanar electrodes structured light-emitting devices, in this article we demonstrate proof of a concept that light-emitting components can be driven by three-phase electric power without utilizing intricate back-end circuits and can compose state detection sensors and pixel units in a single device inspiring from three primary colors. Here we report a three-phase electric power driven electroluminescent devices fabricated featuring of flexibility and multi-functions. The design consists of three coplanar electrodes with dielectric layer(s) and light emission layer(s) coated on a top of input electrodes. It does not require transparent electrodes for electrical input and the light emission occurs when the top light-emitting layers are connected through a polar bridge. We demonstrate some applications of our three-phase electric power driven electroluminescent devices to realize pixel units, interactive rewritable displays and optical-output sensors. Furthermore, we also demonstrate the applicability of three-phase electrical power source to drive organic light-emitting devices with red, green and blue-emitting pixels and have shown high luminance (up to 6601 cd/m2) and current efficiency (up to 16.2 cd/A) from fabricated three-phase organic light-emitting devices. This novel geometry and driving method for electroluminescent devices is scalable and can be utilized even in a wider range of other types of light-emitting devices and special units.


2016 ◽  
Author(s):  
Ferruccio Pisanello ◽  
Gil Mandelbaum ◽  
Marco Pisanello ◽  
Ian A. Oldenburg ◽  
Leonardo Sileo ◽  
...  

ABSTRACTOptogenetics promises spatiotemporal precise control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either large brain volumes or dynamically selectable subregions. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons when compared to the standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.


RSC Advances ◽  
2017 ◽  
Vol 7 (51) ◽  
pp. 31833-31837 ◽  
Author(s):  
Amlan K. Pal ◽  
David B. Cordes ◽  
Alexandra M. Z. Slawin ◽  
Cristina Momblona ◽  
Antonio Pertegás ◽  
...  

Two cationic Ir(iii) complexes bearing bithiazole-type ancillary ligands have been synthesised and tested as deep red-to-near-infrared emitters in solution-processed electroluminescent devices.


2013 ◽  
Vol 1567 ◽  
Author(s):  
Daniel Tordera ◽  
Antonio Pertegás ◽  
Enrique Ortí ◽  
Henk J. Bolink

ABSTRACTLight-emitting electrochemical cells (LECs) are one of the simplest electroluminescent devices. The possibility to be processed from solution and to operate with air-stable materials makes them an attractive alternative to organic light emitting diodes (OLEDs). Still their efficiencies are below those obtained in OLEDs. Additionally the best efficiencies were reported at low luminances and sustained for a short period of time. Here we show that for a LEC employing an orange-emitting charged iridium complex that is driven using a pulsed driving scheme high efficiencies of up to 20.5 cd A-1 can be obtained at high luminance and sustained over the device lifetime. It is also shown that the efficiency depends strongly on the current density applied.


2012 ◽  
Vol 83 (7) ◽  
pp. 730-739 ◽  
Author(s):  
Jing Shen ◽  
Xiaoming Tao ◽  
Diqing Ying ◽  
Chiyuan Hui ◽  
Guangfeng Wang

2019 ◽  
pp. 101-107
Author(s):  
Sergei A. Stakharny

This article is a review of the new light source – organic LEDs having prospects of application in general and special lighting systems. The article describes physical principles of operation of organic LEDs, their advantages and principal differences from conventional non-organic LEDs and other light sources. Also the article devoted to contemporary achievements and prospects of development of this field in the spheres of both general and museum lighting as well as other spheres where properties of organic LEDs as high-quality light sources may be extremely useful.


Sign in / Sign up

Export Citation Format

Share Document